
 

 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 
 
 

THESIS 
OPERATION AND MAINTENANCE SUPPORT 

INFORMATION (OMSI) CREATION, MANAGEMENT, 
AND REPURPOSING WITH XML 

 
by 
 

Scott P. Raymond 
 

September 2004 
 

Co-Advisors:                     Daniel R. Dolk  
                     Gordon H. Bradley 

Approved for public release; distribution is unlimited 



 

THIS PAGE INTENTIONALLY LEFT BLANK 
 



i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including 
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and 
completing and reviewing the collection of information. Send comments regarding this burden estimate or any 
other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 
(0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE  
September 2004 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE:  Title (Mix case letters) 
Operation And Maintenance Support Information (OMSI) Creation, Management, 
And Repurposing With XML 
6. AUTHOR(S)   Raymond, Scott P. 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING 
ORGANIZATION REPORT 
NUMBER     

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING / MONITORING 
     AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the Department of Defense or the U.S. Government. 
12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
 New facility construction and existing facility renovation create new or modified operation and maintenance (O&M) 
requirements for the maintenance responsibility organization such as a Public Works Department (PWD).  This O&M 
requirement is fully described by an Operation and Maintenance Support Information (OMSI) package.  OMSI content 
includes facility, systems, and product information. 
 This thesis will address information integration, the process of allowing information systems to cross-communicate and 
share data.  OMSI information integrated within the framework of a Computer-Aided Facility Management (CAFM) system 
allows for early identification of O&M requirements, an improved planning capability for new facilities, and more efficient 
economies of scale.  In addition to PWD manpower savings, OMSI-CAFM integration will also allow a revolution in the way 
O&M requirements are planned and created.  Preliminary OMSI information would be ideally created by the design A/E after 
having considered work force capability from both a workload and expertise perspective.  While this may be impractical due to 
the changing nature of workforce capability and the lengthy planning and design cycle of military construction, OMSI-CAFM 
integration will certainly allow O&M planning to begin early in the OMSI development stages.  OMSI submittals can be 
layered to provide preliminary planning information in the first submittal and add additional detailed information in later 
submittals.  In such a manner, PWD O&M planners can begin an incremental planning effort early in the facility construction 
phase. 
 This thesis provides a non-proprietary, no-cost solution to OMSI-CAFM information integration that minimizes 
specialized knowledge on the part of the OMSI AE.  This will allow a broad applicability of the solution to all OMSI 
developers, including those for smaller non-MILCON projects that aren’t specifically funded for OMSI generation.  An 
effective solution must also provide for easy and inexpensive repurposing of OMSI information for future (and as yet 
unknown) uses.  The solution uses XML technologies (XML, XSD, XLS, XLST, XPath, XQuery, etc) and XML storage 
systems for the content creation, management, and repurposing of OMSI information. 

15. NUMBER OF 
PAGES 139 

 

14. SUBJECT TERMS  Information Integration, Operation and Maintenance, O&M, Support 
Information, OMSI, building, facility, relational, XML, data models, transformation, repurposing, 
XSLT, XQuery 

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION 
OF ABSTRACT 

 
UL 



ii

THIS PAGE INTENTIONALLY LEFT BLANK 



iii

Approved for public release; distribution is unlimited 
 
 

OPERATION AND MAINTENANCE SUPPORT INFORMATION (OMSI) 
CREATION, MANAGEMENT, AND REPURPOSING WITH XML 

 
Scott P. Raymond 

Lieutenant Commander, Unites States Navy 
B.S., Rensselaer Polytechnic Institute, 1990 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
September 2004 

 
 
 
Author: Scott P. Raymond 
 
 
Approved by: Professor Daniel R. Dolk 
 Thesis Co-Advisor 
 
 
 Professor Gordon H. Bradley 
 Thesis Co-Advisor 
 
 
 Professor Dan C. Boger 

Chairman, Department of Information Systems Technology 



iv

THIS PAGE INTENTIONALLY LEFT BLANK 



v

ABSTRACT 

New facility construction and existing facility renovation create new or modified 

operation and maintenance (O&M) requirements for the maintenance responsibility 

organization such as a Public Works Department (PWD).  This O&M requirement is fully 

described by an Operation and Maintenance Support Information (OMSI) package.  

OMSI content includes facility, systems, and product information. 

This thesis will address information integration, the process of allowing 

information systems to cross-communicate and share data.  OMSI information integrated 

within the framework of a Computer-Aided Facility Management (CAFM) system allows 

for early identification of O&M requirements, an improved planning capability for new 

facilities, and more efficient economies of scale.  In addition to PWD manpower savings, 

OMSI-CAFM integration will also allow a revolution in the way O&M requirements are 

planned and created.  Preliminary OMSI information would be ideally created by the 

design A/E after having considered work force capability from both a workload and 

expertise perspective.  While this may be impractical due to the changing nature of 

workforce capability and the lengthy planning and design cycle of military construction, 

OMSI-CAFM integration will certainly allow O&M planning to begin early in the OMSI 

development stages.  OMSI submittals can be layered to provide preliminary planning 

information in the first submittal and add additional detailed information in later 

submittals.  In such a manner, PWD O&M planners can begin an incremental planning 

effort early in the facility construction phase. 

This thesis provides a non-proprietary, no-cost solution to OMSI-CAFM 

information integration that minimizes specialized knowledge on the part of the OMSI 

AE.  This will allow a broad applicability of the solution to all OMSI developers, 

including those for smaller non-MILCON projects that aren’t specifically funded for 

OMSI generation.  An effective solution must also provide for easy and inexpensive 

repurposing of OMSI information for future (and as yet unknown) uses.  The solution 

uses XML technologies (XML, XSD, XLS, XLST, XPath, XQuery, etc) and XML 

storage systems for the content creation, management, and repurposing of OMSI 

information. 



vi

THIS PAGE INTENTIONALLY LEFT BLANK 
 



vii

TABLE OF CONTENTS 

I: PROBLEM CHARACTERIZATION ................................................................................ 1 
A. PROBLEM DESCRIPTION...................................................................................................... 1 
B. METHODOLOGY.................................................................................................................. 2 
C. SCOPE OF THESIS ................................................................................................................ 2 
D. SUMMARY OF THESIS ......................................................................................................... 3 

II: BACKGROUND OF PROBLEM ....................................................................................... 5 
A. ORGANIZATIONAL OVERVIEW............................................................................................. 5 

1. Atlantic Division, Naval Engineering Facilities Command (LANTDIV)..................... 5 
2. Naval Air Station Sigonella (NASSIG)......................................................................... 7 
3. Support Contractors ...................................................................................................... 9 

B. SUMMARY OF PROBLEM ..................................................................................................... 9 
1. Current OMSI Delivery Process ................................................................................. 11 
2. The Future of OMSI.................................................................................................... 13 

III: REVIEW OF TECHNOLOGIES................................................................................. 15 
A. BACKGROUND CONCEPTS................................................................................................. 15 
B. DATA, MODELS, AND METAMODELS ............................................................................... 15 

1. The Relational Data Model ......................................................................................... 16 
a. Characteristics of the Relational Data Model ....................................................................... 16 
b. Benefits of the Relational Data Model.................................................................................. 17 

2. The XML Data Model................................................................................................. 18 
3. Comparison Between the Relational and XML Data Models ..................................... 22 

C. DATA STORAGE SYSTEMS ................................................................................................ 22 
D. XML AS A DATA STORAGE SYSTEM ................................................................................ 23 

1. Separating Data from Presentation.............................................................................. 24 
2. Platform Independent Transportation of Data............................................................. 25 

E. MIDDLEWARE................................................................................................................... 26 
IV: ARCHIBUS SCHEMA FOR REPRESENTING OMSI DATA ................................ 29 

A. DEVELOPMENT HISTORY .................................................................................................. 29 
1. Building Systems ........................................................................................................ 29 
2. Document Management .............................................................................................. 30 

B. OMSI ENTITY RELATIONSHIP DIAGRAM .......................................................................... 31 
C. DATABASE RELATIONSHIPS DIAGRAM ............................................................................. 33 
D. DOCUMENT-CENTRIC INFORMATION ................................................................................ 35 

V: XML SCHEMA FOR REPRESENTING OMSI DATA................................................. 39 
A. BACKGROUND .................................................................................................................. 39 
B. SCHEMA TECHNOLOGIES .................................................................................................. 39 

1. DTDs........................................................................................................................... 40 
2. XML Schema .............................................................................................................. 41 
3. RELAX NG................................................................................................................. 41 

C. SCHEMA STRUCTURE CONSIDERATIONS ........................................................................... 42 
1. Elements vs. Attributes ............................................................................................... 42 
2. Hierarchical Composition ........................................................................................... 44 
3. Normalization.............................................................................................................. 44 

D. MODELING RULES ............................................................................................................ 46 
1. Modeling Recipes ....................................................................................................... 47 
2. Representing Relationships in XML ........................................................................... 49 

E. OMSI XML SCHEMA ....................................................................................................... 50 



viii

VI: STORAGE OF XML-BASED OMSI INFORMATION ............................................ 55 
A. STORAGE METHODS ......................................................................................................... 55 

1. File Systems ................................................................................................................ 55 
2. Relational Databases ................................................................................................... 56 
3. Native XML Databases ............................................................................................... 56 

B. XML DATABASE PRODUCTS ............................................................................................ 58 
C. DATA-CENTRIC  STORAGE ................................................................................................ 60 
D. DOCUMENT-CENTRIC STORAGE........................................................................................ 60 

1. DocBook Background................................................................................................. 61 
2. Creating DocBooks ..................................................................................................... 63 
3. Rendering DocBooks with Styling.............................................................................. 66 
4. Sample OMSI DocBook ............................................................................................. 67 

VII: XML-BASED OMSI INFORMATION TRANSFORMATIONS.............................. 69 
A. TRANSFORMATION TECHNOLOGIES .................................................................................. 69 

1. XSL Transformations (XSLT) .................................................................................... 69 
2. XQuery........................................................................................................................ 70 
3. Comparison of XSLT and XQuery ............................................................................. 71 

B. INTEGRATED WEB BROWSER SUPPORT ............................................................................ 72 
VIII: DEVELOPMENT AND IMPLEMENTATION.......................................................... 77 

A. ARCHIBUS TO OMSIML TRANSFORMATION .................................................................... 78 
B. THE DESIGN-BASED PLANNING SUBMITTAL .................................................................... 82 
C. THE PM LIBRARY............................................................................................................. 85 

IX: CONCLUSIONS AND IMPLICATIONS.................................................................... 91 
A. CONCLUSIONS .................................................................................................................. 91 
B. AREAS FOR FURTHER RESEARCH AND DEVELOPMENT ..................................................... 92 
C. IMPLICATIONS................................................................................................................... 93 

APPENDIX A – ARCHIBUS DATA TRANSFER FUNCTIONALITY................................. 95 

APPENDIX B – OMSI XML SCHEMA .................................................................................... 96 

APPENDIX C – SAMPLE OMSI DOCBOOK ....................................................................... 103 

APPENDIX D – XSLT AND XQUERY TRANSFORMATIONS LISTING........................ 111 

LIST OF REFERENCES .......................................................................................................... 119 

LIST OF SOFTWARE APPLICATIONS AND STANDARDS ............................................ 121 

INITIAL DISTRIBUTION LIST ............................................................................................. 123 

 



ix

LIST OF FIGURES 

Figure 1.  LANTDIV's Facilities Life Cycle .......................................................................6 
Figure 2.  OMSI Components..............................................................................................7 
Figure 3.  PWD Storefront Mission, Vision, and Focus Areas............................................8 
Figure 4.  Current OMSI Database Synchronization Method............................................12 
Figure 5.  Timeline of OMSI Deliverables ........................................................................14 
Figure 6.  Data, Models, and Metamodels .........................................................................16 
Figure 7.  XML Technologies............................................................................................23 
Figure 8.  "Raw" XML Document .....................................................................................24 
Figure 9.  XML "Transformed" into HTML......................................................................25 
Figure 10.  Entity Relationship Diagram for OMSI ..........................................................32 
Figure 11.  Archibus Database Schema for OMSI ............................................................33 
Figure 12.  OMSI XML Schema Diagram.........................................................................52 
Figure 13.  Using Authentic for Authoring a DocBook.....................................................64 
Figure 14.  Using XXE for Authoring a DocBook ............................................................65 
Figure 15.  DocBook Fragment and Automatically Rendered Presentation......................67 
Figure 16.  Client-side XML Transformations ..................................................................74 
Figure 17.  Development Methodology .............................................................................77 
Figure 18.  XML Schema of Access’ Equipment Listing Exported as XML....................80 
Figure 19.  Design-Based Planning Submittal Request by NAS Sigonella.......................82 
Figure 20.  DBPS XML Schema Diagram.........................................................................83 
Figure 21.  Design-Based Planning Submittal Delivery....................................................85 
Figure 22.  PMLibrary XML Schema Diagram.................................................................86 
Figure 23.  Archibus PM Procedure Schema.....................................................................86 
Figure 24.  Archibus/FM XML Export Schema for PM Library.......................................88 
Figure 25.  Authentic View of PM Library........................................................................89 

 
 



x

THIS PAGE INTENTIONALLY LEFT BLANK 



xi

LIST OF TABLES 

Table 1.  XPath Node Types ..............................................................................................21 
Table 2.  Comparison Between the Relational and XML Data Model..............................22 
Table 3.  UNIFORMAT Classification Levels ..................................................................30 
Table 4.  Database Table Descriptions ..............................................................................34 
Table 5.  Comparison of Containment and Intra-document Referencing..........................50 
Table 6.  Classifications of XML Database Products ........................................................59 
Table 7.  DocBook Elements Appropriate for OMSI ........................................................63 
Table 8.  XSLT Support in Web Browsers ........................................................................73 
Table 9.  DBPS XSLT and XQuery Performance .............................................................84 

 



xii

THIS PAGE INTENTIONALLY LEFT BLANK 



xiii

ACKNOWLEDGEMENTS 

 
 I thank the faculty at the Naval Postgraduate School for their excellent education 

and outstanding resources.  I owe much gratitude to my thesis advisors because they were 

invaluable to the completion of this thesis, but more importantly, they are great educators 

who have set me up for long-standing success. 

I also thank George Oberlander Jr. for teaching me that software doesn’t drive the 

process, rather the process drives the software.  While this may seem a simple lesson, it is 

often overlooked and has a profound impact on any software-related development 

project. 

 



xiv

THIS PAGE INTENTIONALLY LEFT BLANK



1

I:   PROBLEM CHARACTERIZATION 
 

Where is the Life we have lost in living? 
Where is the wisdom we have lost in knowledge? 

Where is the knowledge we have lost in inform ion? at
The cycles of Heaven in twenty centuries 

Bring us farther from GOD and nearer to the Dust. 

   - T.S. Eliot; Choruses from the Rock 

A. PROBLEM DESCRIPTION 

While lamenting our distancing from Life, T.S. Eliot characterized the first known 

hierarchy of knowledge:  Information →  Knowledge →  Wisdom.  Had he written The 

Rock in the 21st century, he surely would have added the line “Where is the information 

we have lost in data?” 

Russell Ackoff describes five levels of knowledge in the human mind:  data 

(symbols), information (useful data), knowledge (application of data and information), 

understanding (why a state came to be), and wisdom (vision and design) (Ackoff 1989).  

Avoiding philosophical considerations of this knowledge hierarchy at the upper three 

levels, the lower two levels (data and information) are fundamentally important to any 

information system.   

The general problem addressed in this thesis is information integration.  Many 

legacy systems are stove-piped, meaning that data comes in or out at the tops and 

bottoms, but there is very little cross-communication between adjacent systems.  

Stovepipes significantly reduce the value of data used in an information context because 

it is very difficult, and sometimes impossible, to leverage the data beyond anything other 

than its originally intended purpose.  Quite simply, many information systems, especially 

those that are stove-piped, leave unused a great deal of potential information contained in 

data. 

Data is created or collected as a pure analytical exercise; measurements are made, 

tolerances are estimated, pieces are counted, and processes are described.  Data can be 

represented as electronic bits, printed text, memorized facts, images, or any other suitable 

method of recording.  While such data may have context or semantics, it does not by 

itself provide any useful information.  Information systems (those systems that collect 



2

data, apply context or semantics, and represent the information) are able to provide 

greater understanding and connectivity of data.  Unfortunately they are often not able to 

share their representations with other systems. 

We consider information integration to be the process of allowing information 

systems to cross-communicate and share data.  This integration allows both structured 

data (e.g., data contained in databases) and semi-structured data (e.g., data contained in 

documents) to be collected once and purposed as new information across any number of 

systems.  This creates the ability to repurpose data without manual intervention or re-

authoring.  Unfortunately, information integration is often an afterthought considered 

only when requirements for a new information system are identified.  We will address a 

method of integrating information a priori as opposed to post facto, using a process that 

begins the moment data is collected. 

B. METHODOLOGY 

The process of information integration begins with an analysis of how 

information is stored and accessed.  We examine both relational database management 

system (RDBMS) and XML representations of relational information.  These two 

information “models” will be used to represent the same data.  Information integration is 

successfully achieved when one model can be transformed to all other models.  This will 

result in a framework that supports the entire information life-cycle:  creation, 

management, and repurposing.  [N.B.  I am not referring to “Information Lifecycle 

Management” which is the process of determining how data and information flow from 

the moment it is created or identified to the end of its use by way of retention policy.]  

Using multiple models of the same information will allow for more elegant and efficient 

repurposing to satisfy myriad end-user needs.  We develop these models and then apply 

them to a specific application, namely facilities construction and management, to show 

the feasibility of this design. 

C. SCOPE OF THESIS 

This thesis addresses information integration in the realm of facilities 

management.  Computer-Aided Facility Management (CAFM) systems are complex 



3

                                                

information management systems that support the life-cycle management process of 

facilities from design, through construction and commissioning, occupancy, and 

demolition.  The United States Navy is responsible for the operation and maintenance of 

31,000 buildings located on 2,000 bases worldwide. Given such a large span of control, 

information integration within the realm of the Navy’s CAFMs is essential for effective 

oversight and planning.  The two major CAFMs currently in use by the Navy are 

Archibus [ARCHIBUS]1 in the European region and Maximo [MAXIMO] in the 

remaining regions.  We consider information integration only for the Archibus system, 

which includes the authoring process of the facility management information (known as 

Operation and Maintenance Support Information, or OMSI), the synchronization of the 

information within the CAFM, and repurposing the information for non-CAFM use. 

D. SUMMARY OF THESIS 

The remainder of this thesis is divided into eight chapters.  Chapter II provides a 

more detailed background of the problem and includes overviews of the organizations 

involved in the Navy’s OMSI program.  Chapter III reviews the technologies involved in 

data modeling and data storage systems.  Chapter IV documents the development of the 

Archibus schema for representing OMSI data and includes an entity-relationship (ER) 

diagram and database schema diagram.  Chapter V reviews XML schema technologies, 

established schema design considerations and modeling rules, and documents an XML 

Schema that is equivalent to the ER diagram of the previous chapter.  Chapter VI 

contains an analysis of the storage of XML-based OMSI information.  Data-centric and 

document-centric systems are described and compared for use with OMSI.  Chapter VII 

provides descriptions of the XML transformation technologies that are needed for OMSI 

deliverables.  Chapter VIII details the development and implementation of XML-based 

deliverables to be used with OMSI.  Some deliverables are proof-of-concepts while 

others are production-ready.  Chapter IX summarizes the conclusions and implications of 

this thesis 

 
 

1 Software applications and standards referenced by square brackets are listed at the end of this thesis. 



4

THIS PAGE INTENTIONALLY LEFT BLANK 
 



5

II:   BACKGROUND OF PROBLEM  

A. ORGANIZATIONAL OVERVIEW 

This thesis deals with the operation and maintenance (O&M) of Navy facilities.  

While there are countless organizations involved with the life-cycle creation and 

management of the O&M process throughout the entire Navy, I focus on the process at a 

single overseas base in Sicily, Italy.  The organizations involved in this process are 

Atlantic Division, Naval Engineering Facilities Command; Naval Air Station Sigonella; 

Archibus Solutions Center – Research Triangle; and Syska.  While other bases include 

parallel or even different organizations, the fundamental process is similar and can be 

easily extended from this thesis. 

The following sections provide a basic overview of these organizations as context 

for the discussion of the relevant problem and issues. 

1. Atlantic Division, Naval Engineering Facilities Command 

(LANTDIV) 

The Atlantic Division, Naval Engineering Facilities Command (LANTDIV) has 

as its mission to provide quality facilities, proactive operational support, and expert 

engineering services to military and non-military government agencies.  LANTDIV is an 

Engineering Field Division (EFD) under Naval Facilities Engineering Command 

(NAVFAC) authority.  All information concerning LANTDIV has been taken from their 

website (LANTDIV 2004). 

LANTDIV was established in 1942 with the intent to decentralize and expedite 

NAVFAC actions in the Atlantic area, to provide liaison between NAVFAC and field 

organizations, and to provide competent liaisons between theater commanders and 

Seabee Construction Battalions.  It has since evolved into the primary engineering 

advisor to operational commanders. 

LANTDIV uses a Facilities Life Cycle model described in Figure 1 to manage all 

facets of the Navy’s public works and facility planning requirements. 

 



Figure 1.  LANTDIV's Facilities Life Cycle 

 

SOURCE:  From the LANDTIV Homepages (LANTDIV 2004) 

Of particular interest among LANTDIV’s services provided to the Navy is the 

“Base Operations” Business Line, which is part of the “Facility, Transportation, Utility 

Management” life cycle element.  Base Operations contains a branch called “Facilities 

Maintenance and Engineering Branch”, which is summarized by the following 

description: 

[The] Facilities Management and Engineering Branch of the Base 
Operations Support Business Line of the Atlantic Division, Naval 
Facilities Engineering Command … provides facilities engineering and 
technical assistance in managing the Navy's Public Works Management 
Program as related to maintenance engineering applications and 
implementation at the Claimant, Regional and Activities levels. In support 
of the Navy's Base Operations requirements, the Branch provides 
Sustainment, Restoration and Modernization (SRM) program 
management, Facilities Condition Assessment program (FCAP) 
management, Operation Maintenance Support Information (OMSI) 
program management, and Cathodic Protection (CP) technical expertise. 
These programs have been established to focus on the resource and life-
cycle management of facilities and assets belonging to the Navy. As your 

6



partner in the Facilities Management and Engineering business, we are 
committed to providing you the best possible support and tools for 
effective and efficient management of your assets. 

This thesis focuses on the OMSI product:  information to help the facility user and 

maintenance staff effectively operate, maintain, and repair a facility.  Figure 2 describes 

the components of LANTDIV’s OMSI deliverables.  

Figure 2.  OMSI Components 

 

SOURCE:   From the LANTDIV’S Facilities Management and Engineering Webpage (LANTDIV 2004) 

2. Naval Air Station Sigonella (NASSIG) 

The Naval Air Station Sigonella (NAS Sigonella) is the end-user (or consumer) of 

the OMSI deliverable.  More specifically, their Public Works Department (PWD) 

manages the operation and maintenance (O&M) of all facilities and infrastructure.  The 

PWD’s Program Management Office (PMO) provides cradle-to-grave oversight for the 

design, construction, commissioning, and delivery of construction contracts.  The 

Resident Officer-in-Charge of Construction (ROICC) Office, a tenant command who is 

headed by the dual-hatted Public Works Officer (who has concurrent reporting seniors), 

oversees the actual construction contracts that build, renovate, or repair facilities and 
7



infrastructure.  A portion of these contracts requires the OMSI deliverable.  In 2002, the 

PWD developed the “Storefront” mission, vision, and focus areas identified in Figure 3. 

Figure 3.  PWD Storefront Mission, Vision, and Focus Areas 

SOURCE:  From the NAS Sigonella Pu

 
The Public Works Storefront is the syn
(EFA-MED) offices into one entity that pr

Our Mission 
We proudly build, fix, maintain, and supp
providing high quality and cost effective f

Our Vision 
We are an integral part of the Sigonella t
solutions for Public Works requirements.
excellence and customer satisfaction.  

Our Focus Areas 
For our PEOPLE, we will increase perso
recognition programs. We will improve th
at all levels within our organization.  
 
To be INNOVATIVE, we will implement b
facilities and utilities; and provide the me
 
For our CLIENTS, we will improve: respo
community involvement and the use of p
 
Within our OPERATIONS, we will reduce
our return on investments. 

It is significant to note t

integrated services to their cus

provide for the integrated deliv

after all, internal customers). 

The PWD contains app

Seabees, five chiefs, ten senio

Among its many divisions, the

the O&M requirements.  PWOp

Computer-Aided Facility Ma

responsible for ensuring that c

appropriate; the determining fa

programs. 
Public Works Storefront 

thesis of the Public Works Department (NASSIG) and the ROICC Sicily 
ovides Sigonella customers a single point-of-service for their needs.  

ort Sigonella safely and quickly to meet our customer’s needs by 
acilities, utilities, transportation, environmental, and contracting services.  

eam. We are valued for our ability to provide responsive best-value 
 Our innovative team executes our mission with a strong commitment to 

nnel skills and capabilities as well as the level of satisfaction with our 
e safety and functionality of our workplace, and improve communications 

est business practices that: reduce cycle times and costs; better use our 
ans to achieve better, faster, cheaper, and safer products and services.  

nse; execution; and the sharing of information. We will increase 
rivate investment to improve mission performance.  

 total facility cost, increase our overall operating efficiency, and improve 
 

blic Works Department, February 2002 

hat the Storefront recognizes the importance of providing 

tomers.  In a similar fashion, the Storefront must also 

ery of OMSI within its own organization (employees are, 

roximately 150 local national employees, 170 enlisted 

r U.S. civilians (GS-12 and GS-13s), and six officers.  

 Operations Division (PWOps) is directly responsible for 

s is also responsible for the management of the Archibus 

nagement (CAFM) system.  The PMO Division is 

onstruction contracts contain OMSI deliverables where 

ctor is usually budget availability within the MILCON 

8



9

3. Support Contractors 

The creation of OMSI requires significant effort by an Architect/Engineer (A/E) 

contractor to collect equipment manufacturer’s data from construction contractors and 

develop the OMSI submittal.  LANTDIV manages this OMSI A/E contractor for all 

Military Construction (MILCON) contracts at NAS Sigonella and typically uses a single 

contractor for all OMSI deliverables during a contract period.  The first OMSI A/E to 

begin implementing OMSI deliverables into the Archibus Computer-Aided Facility 

Management (CAFM) system at NAS Sigonella was Syska in 2003. 

 Delivering OMSI into the framework of a CAFM requires coordination with a 

database administrator.  NAS Sigonella (and all of Navy Region Europe) uses Archibus 

Solutions Center – Research Triangle (ASC-RT) as their subject matter expert for 

Archibus.  Indeed, any changes to the Archibus schema must be coordinated through the 

Archibus Program Manager, who in turn, contracts with ASC-RT to make the changes 

and disseminate them throughout Navy Region Europe.  Syska also uses ASC-RT as their 

Archibus subject matter expert and has contracted with them in the past to deliver OMSI 

into Archibus. 

B. SUMMARY OF PROBLEM 

New facility construction or existing facility renovation creates new or modified 

operation and maintenance (O&M) requirements for the maintenance responsibility such 

as a Public Works Department (PWD).  This O&M requirement is fully described by an 

Operation and Maintenance Support Information (OMSI) “package” delivered by the 

project’s Design A/E, the construction contractor, or a specialized OMSI A/E.  OMSI 

content includes facility information, primary systems information, and product data.  

Ten years ago, this content was delivered on paper (usually two to five volumes).  In the 

last five years, this data has been provided as an electronic delivery (PDF files), although 

it is still document-based and maintains a printed-page style layout.  The benefits of such 

electronic delivery included reduced expense (it was always created electronically as a 

first step), the searchable nature of electronic data, and the ease of distribution. 

Operation and maintenance organizations often utilize a Computer-Aided Facility 

Management (CAFM) system to manage and oversee the scheduling of O&M 



10

requirements.  The CAFM also provides database information on assets, generates 

historical performance reports, and plans for current and future O&M requirements. 

Historically OMSI is delivered at the time of facility acceptance (i.e. when the 

construction is complete and the facility is ready for occupancy) and the PWD is left to 

incorporate the data into the CAFM system using their own manpower, and in whatever 

manner is deemed appropriate at the time.  Atlantic Division, Naval Facilities 

Engineering Command (LANTDIV) and NAS Sigonella are now in the process of 

integrating OMSI delivery within the framework of the CAFM. 

The benefits of creating and delivering OMSI within the framework of the CAFM 

system include economies of scale, early identification of operation and maintenance 

(O&M) requirements, and planning capability for new facilities.  In addition to these 

PWD manpower savings, OMSI-CAFM integration will also allow a revolution in the 

way O&M requirements are planned and generated.  Ideally, preliminary OMSI 

information would be created by the design A/E after having considered work force 

capability from both a workload and expertise perspective.  While this may be 

impractical due to the changing nature of workforce capability and the lengthy planning 

and design cycle of military construction, OMSI-CAFM integration will certainly allow 

O&M efforts to begin early in the OMSI development stages.  OMSI submittals can be 

layered to provide preliminary planning information in the first submittal and add 

additional detailed information in later submittals.  In such a manner, PWD O&M 

planners can begin an incremental planning effort early in the facility construction phase.  

This is critical to the successful management of facility commissioning because 

contracted maintenance must be budgeted years in advance and some maintenance 

agencies require advance notice of new requirements.  Incremental planning ensures a 

proactive approach to facility management and avoids the necessity for reactive last-

minute planning.  In extreme cases, new facilities must go without O&M because the 

organic workforce is unable to assume the responsibility and contracts cannot be setup or 

modified in time to start maintenance upon facility commissioning.  

NAS Sigonella is currently in the fourth year of a ten-year, $750M 

Recapitalization effort that will require $5M to $10M to generate OMSI deliverables.  

Significant strides were made in the summer of 2002 to require future OMSI submissions 



11

to be delivered directly into the CAFM system.  However, this effort is narrowly focused 

to solve a specific problem for one OMSI AE and one OMSI contract.  The solution 

involves proprietary knowledge and proprietary software – items that prohibit an 

immediate and general application of the solution to other OMSI deliverables.  There is 

also the added expense of subcontracting with the Archibus contractor each time the 

deliverable must be incorporated into the existing database. 

The objective is to seek a solution to OMSI-CAFM integration that minimizes 

specialized knowledge on the part of the OMSI AE.  This will allow a broad applicability 

of the solution to all OMSI developers, including those for smaller non-MILCON 

projects that aren’t specifically funded for OMSI generation.  An effective solution must 

also provide for easy and inexpensive repurposing of OMSI information for future (as 

well as yet unknown) uses.  It is expected that the cost of creating the deliverable will 

also decrease with Archibus contractor independence. 

1. Current OMSI Delivery Process 

The current OMSI process was reviewed to gain an understanding of the issues 

which impact the final deliverables.  In general, the process of creating database content, 

synchronizing new content with existing content, and presenting database content for 

varied purposes can be difficult – sometimes overwhelmingly so.   The creation of OMSI 

deliverables is an example that demonstrates such difficulty.  Figure 4 is a diagram of the 

current method for synchronizing OMSI deliverables from Syska (the current OMSI A/E 

under contract with LANTDIV) with a larger CAFM database at NAS Sigonella. 



Figure 4.  Current OMSI Database Synchronization Method 

SIG OMSI 
DB LIVE

SIG OMSI 
DB

SIG OMSI 
DB TBD

SIG OMSI 
DB LIVE

SIG OMSI 
DB TBD

Syska DB
Empty EQ, 

PMP, PMPS, PMS

Syska DB
FINAL

Syska DB
Drawing Data

Syska DB
Added EQ,

PMP, PMS, PMPS

No Additional Editing

SIG OMSI 
DB

Phase 1 Structural
Customization

Phase 1
Data Integration

Phase 2
Data Integration

Phase 2 Structural
Customization

06/02

08/27/02

Deliverable: 10/03/02

Deliverable: TBA

Deliverable: TBA

 

SOURCE:  From the ASC-RT delivery documentation flowchart by Sherri Johnston dated 03 October 2002 

Each transport stage that connects the “Syska DB” (the development Archibus 

database) to the “SIG OMSI DB” (the production Archibus database), or vice versa, 

requires specialized work by a contractor familiar with Archibus in general and NAS 

Sigonella’s implementation of Archibus in particular.  Of course, this work is an effort 

that requires time and money.  The term for software that performs these transports is 

generally known as “middleware”.  Though there are many commercial middleware 

applications, ASC-RT chose to develop their own “one-off” middleware solution for 

synchronizing the development and production Archibus databases.  This has resulted in 

an expensive, closed-source solution. 

Archibus has built-in functionality as well as an API for importing and exporting 

its data.  Unfortunately this functionality is not currently being used to synchronize OMSI 

deliverables.  This represents a great untapped improvement for creating a free and open 

methodology for avoiding a middleware solution. 

12



13

2. The Future of OMSI 

As the last ten years of OMSI deliverables at NASSIG have shown, it is difficult 

to predict future OMSI processes.  Nonetheless, we can learn from our past missteps and 

avoid repeating the same pitfalls. 

Consider the case of the oldest OMSI deliverables:  printed manuals.  While it is 

presumed these manuals met all the needs of their consumers when originally delivered, 

they now sit on shelves collecting dust – if they haven’t been lost, thrown out, or 

destroyed.  Updates to the manuals were not made, which calls into question their 

accuracy.  As facility management processes have changed over the years, the printed 

manuals cannot be incorporated easily into new O&M systems.  For example, it is an 

expensive and time-consuming task to convert these printed manuals into some electronic 

form suitable for Archibus.  In short, the printed manuals are of limited value to the 

current OMSI program.   

The decision to move to an electronic OMSI deliverable did not solve either of the 

two problems previously discussed:  current-day accuracy and repurposing for new 

modes of consumption.  PDF documents are as static as the printed manual and there is 

no easy way to convert them to use in any database, except using rudimentary techniques 

such as Binary Large Objects (BLOBs) to store the entire document in a database field.  

It would seem the only improvement gained by PDF deliverables is the reduction of 

production costs (printing can be expensive) and the liberation of library shelves. 

The decision two years ago to deliver OMSI directly into Archibus only solves 

one of the problems still associated with PDF deliverables.  While NASSIG is now able 

to ensure current-day accuracy by maintaining the electronic database, repurposing is still 

a difficult prospect.  This solution, while revolutionary, did not avoid the same pitfall we 

experienced ten years ago! 

The results of this thesis describe a better process for delivering OMSI - “better” 

in the sense that it both avoids currently identifiable pitfalls and hedges against future, as 

yet unidentified, pitfalls.  We make the case that a delivery framework of Extensible 

Markup Language (XML) is the foundation of a better process for OMSI creation, 

management, and repurposing.  XML provides a method of OMSI creation, the means for 

its storage, the mode of its delivery, and the feasibility of its cross-platform and cross-



purpose utilization.  XML solves both of the problems discussed:  current-day accuracy is 

assured by incorporating the deliverables directly into Archibus (or any other CAFM for 

that matter) and repurposing for new modes of consumption is easily done using standard 

(and free) technologies and programs. 

Figure 5 shows the timeline of OMSI deliverables.  XML-based delivery will take 

OMSI far into the future, hedging against new CAFMs, modified O&M practices, 

different planning tools, and even new maintenance organizations (e.g. contracting out all 

maintenance efforts.)  

Figure 5.  Timeline of OMSI Deliverables  

 

This thesis will create a delivery mechanism that can persist well into the future – 

certainly longer than the two years of Archibus-based and five years of PDF-based 

deliverables.  The future of OMSI will include inexpensive modes of content creation and 

flexible manners of repurposing.  The OMSI process will influence a larger portion of the 

facility management life-cycle by providing information at all stages of a facility’s life. 

 

14



15

III:   REVIEW OF TECHNOLOGIES 

A. BACKGROUND CONCEPTS 

This chapter lays out the two concepts necessary for understanding the 

foundations of integrating OMSI with the Archibus CAFM:  data modeling and data 

storage systems.  Data modeling is the more important of the two concepts because the 

choice of model will influence data storage systems that must access the information 

captured in the model. 

B. DATA, MODELS, AND METAMODELS 

Taking a step back to the concept of data storage systems sets the stage for 

dramatic improvements to the current OMSI database synchronization process.  Data 

storage systems rely on models of data to provide semantics for the content stored within 

the system.  The combination of the data and its semantics gives rise to information, 

which is really the whole point behind a data storage system.  Data models can also be 

modeled themselves – these “models of models” are termed metamodels to help prevent 

confusion.  Figure 6 demonstrates a description of common metamodels that define 

languages for expressing models themselves.  

The Relational and XML metamodels are of particular interest to this OMSI 

project.  Both metamodels have seen prolific use in managing complex information 

structures and offer powerful ways of accessing and exchanging information.  We will 

describe both of these models and compare them in the following sections.  

 



Figure 6.  Data, Models, and Metamodels 

SOURCE:  From “Model-Driven Information Integration” (MetaMatrix 2002) 

1. The Relational Data Model 

Edgar F. Codd developed the first database model in 1970 while working for 

IBM.  He published “A Relational Model of Data for Large Shared Data Banks”, using 

mathematical relations to represent data.  Although hierarchical and network databases 

were in use before 1970, Codd was the first to formally describe a data model; it wasn’t 

until later that the hierarchical and network models were retrofitted to describe pre-1970 

models. 

a. Characteristics of the Relational Data Model 
The relational data model represents all data as mathematical relations.  At 

the model’s foundation are domains (or data types) which describe the allowed values of 

data.  Unordered pairs of domain and value are called attributes and sets of attributes are 

called tuples.  Unordered sets of tuples are called relations.  In traditional database 

vernacular, relations are called tables and tuples are called rows.  The properties of 

16



17

relations further constrain the relational data model.  Attributes must be single-valued; 

multiple values are represented by using more than one attribute. 

One of the main tenets of the relational model is the separation of the 

logical and physical views of the data.  Mathematical relations (e.g. subsets of the 

Cartesian product of n sets) are applied to the logical model and reasoning about data is 

accomplished by using the true/false evaluation of a given proposition.  Relational 

calculus and algebra allow operations upon the data for retrieval and manipulation, and a 

relational database management system (DBMS) provides support for these operations to 

define a database and business rules about the data. 

The concept of normalization is deeply rooted in the relational database 

realm; database designers recognize that while there can be many ways to model the 

same data, not all relations are equally attractive.  Some relations can create instances 

where changing the data can have undesirable consequences.  These consequences are 

called “modification anomalies” and through careful consideration they can be avoided 

whenever desired.  The process of redefining relations to avoid these anomalies is called 

“normalization”.  Normalization is essential to the long-term integrity of a database and 

the data model should be normalized prior to using the database for production purposes.  

b. Benefits of the Relational Data Model 
The relational model or relational databases in general, have many useful 

benefits.  Such benefits are usually the result of a strict separation of the logical and 

physical views of the data which allow for great speed and capability and the sharing of 

data amongst multiple applications.   

Physical integrity is an essential aspect of any data model.  In the 

relational data model, such "model integrity" can be looked at on the domain, attribute, 

tuple, and relation level.  Domain and attribute integrity are the most fundamental 

requirements of the relational model.  Tuple integrity, also known as entity integrity, 

requires that the primary key can never be null and that database operations must 

maintain the existence and uniqueness of all the primary keys.  Relation integrity requires 

that foreign keys must be NULL or match the values of the primary keys to which they 

relate. 



18

The physical integrity of the relational data model leads to a very useful 

aspect of the logical view.  Multiple tables can be dynamically joined to present the end-

user with a single table.  The two dimensional nature of “data as a table” is a more natural 

construct for end-users than multi-dimensional relations.  Of course, operations on the 

virtual table must maintain the physical integrity of the underlying relations.   

In addition to the physical integrity of the relational model itself, the 

DBMS must also ensure integrity of the data it manages.  Data integrity can be 

maintained using the ACID model of transactions:  Atomicity, Consistency, Isolation, 

and Durability.  Atomicity requires each database transaction to be atomic – if a part of 

the transaction fails, the whole transaction must fail.  Consistency maintains that only 

valid data can be written to the database.  Isolation permits concurrent transactions but 

prevents impact between them.  Durability ensures that no executed transactions are lost.   

Relational constraints such as keys, dependencies, and referential integrity 

allow the expression of the model beyond what the data model itself requires.  These 

relational constraints are maintained by the DBMS and allow for the creation of a 

database schema based upon identified business rules.  Indexing is another very powerful 

function of the relational model.  It allows for quick access, facilitated sorting, and 

prevention of duplicates for a given attribute. 

2. The XML Data Model 

XML serves as the technological foundation of this study and so it is important to 

understand the fundamental nature of the XML data model.  The W3C essay The XML 

Data Model [XMLDATAMODEL] describes it in the following way: 

The data model for XML is very simple - or very abstract, depending on 
one's point of view. XML provides no more than a baseline on which 
more complex models can be built. All those more restricted applications 
will share some common invariants, however, and it is those that are given 
below.  

Think of an XML document as a linearization of a tree structure. At every 
node in the tree there are several character strings. The tree structure and 
the character strings together form the information content of an XML 
document. Almost everything will follow naturally from that. Some of the 
characters in the document are only there to support the linearization, 
others are part of the information content.  



19

It is not an overstatement that the XML data model is, indeed, quite simple.  Yet XML 

can be used to model very complex information.  It is no less powerful than the relational 

model and provides many unique characteristics that will be useful to the OMSI process. 

XML stands for “eXtensible Markup Language” – a standardized and extensible 

meta-language used to define other markup languages.  W3C’s Extensible Markup 

Language (XML) 1.0 (Third Edition) Recommendation [XML1.0] documents the details 

of the XML standard.  At their foundations, XML markup languages are a hierarchical 

collection of “elements” [N.B.  There are other “node” types in an XML document which 

will be discussed later.]  One example of an XML markup language is XHTML – similar 

to HTML but conforming to all the XML rules.  Other examples are CML, MathML, 

SVG, etc. 

The XML data model describes the construction of XML documents.  These 

documents are Unicode “text” documents (so they are processor and platform 

independent) that contain both data and metadata (data about data.)  Well-formed (not the 

same as “valid”, which will be discussed later) XML documents must conform to the 

following basic rules: 

1) every start tag must have a matching end-tag, or be an “empty” tag;  

2) tags must be properly nested – all children elements must be closed 
before the parent element can be closed;  

3) an XML document can have only one root element;  

4) element and attribute names must begin with a letter or a “_”, contain 
only letters, digits, “_”, “-“, and “.”, and contain no spaces.  They can’t 
start with “xml” and case sensitivity must be respected; 

5) white space is retained within PCDATA; and 

6) values of attribute key-value pairs must be enclosed in quotes or 
apostrophes. 

Data is represented as element “content” (the stuff between the tags) and sub-

elements.  Metadata is contained in the element tag names and attributes which describe 

the elements.  Data and metadata combined in the same document give rise to 

information – that is, data with meaning.  This allows XML to solve problems of 

semantics, structure, and style all at once. 

XML documents can be “validated” against a standardized schema by using XML 

schemas; validation ensures that the format of the document is in accordance with the 



20

markup language specifications.  For example, the XML schema can require that each 

<Book> element must have an <Isbn> child element.  XML schemas can use regular 

expressions which allow exceptional control over element/attribute presence and text 

content. 

An XML document is essentially just a hierarchical tree of “nodes.”  These nodes 

can be described using the Document Object Model (DOM) [DOM1.0], which provides a 

standard set of objects for representing both HTML and XML documents.  The DOM 

also serves as a standard interface for accessing and manipulating HTML and XML 

objects. 

The DOM represents XML documents as a hierarchy of Node objects, of which 

there are twelve types:  Element, Attribute, Text, CDATA Section, Entity Reference, 

Entity, Processing Instruction, Comment, Document, Document Type, Document 

Fragment, and Notation.   

An XPath tree [XPATH1.0] is an alternate model for representing an XML 

document.  There are only seven XPath node types:  root node, element node, text node, 

attribute node, comment node, processing instruction node, and namespace node.  These 

node types correspond fairly directly to the DOM Node object.  Each XPath node type is 

described in Table 1. 



21

Table 1.  XPath Node Types 

Node Type Description 

Root node There is one root node for each document.  This is similar to 
the DOM’s document node.  Do not confuse the root node 
with the document element, which in a well-formed 
document is the outermost element that contains all other 
elements. 

Element node An element node is a part of the document bounded by start 
and end tags, or represented by a single empty element tag 
such as <Tag/> 

Text node A text node is a sequence of consecutive characters in a 
PCDATA part of an element.  There can never be two 
adjacent text nodes in the tree because a text node is made 
as big as possible (they will be merged together.) 

Attribute node An attribute node includes the name and value of an 
attribute written within an element start tag (or empty 
element tag.) 

Comment node A comment node represents a comment written in the XML 
source document between the delimiters “<!--“ and “-->”. 

Processing Instruction 
Node 

A processing instruction node represent a processing 
instruction written in the XML source document between 
the delimiters “<?” and “?>”.  Note that the XML 
declaration (“<?xml version=’1.0’?>”) is not a processing 
instruction, even though it looks like one. 

Namespace node A namespace node represents a namespace declaration, 
except that it is copied to each element that it applies to.  So 
each element node has one namespace node for every 
namespace declaration that is in scope for the element. 

 
SOURCE:  From “XSLT, 2nd Edition” (Kay 2003) 

The concept of a node is important.  XPath (as well as other XML technologies 

that use XPath) does not provide direct access to tags, attributes, or other markup.  

Instead, it provides access to the logical nodes established by the particular markup.  The 

relationships between nodes are central to XPath; the document tree can be traversed 

based on how elements relate to one another or how attributes relate to elements, etc. 



22

3. Comparison Between the Relational and XML Data Models 

Table 2 summarizes the differences between the relational and XML data model. 

Table 2.  Comparison Between the Relational and XML Data Model 

 Relational XML 

Structure: Data is stored in a two-dimensional 
array of rows and columns.  The 
structure is flat, but relations 
between tables provide depth. 

Data is stored in a nested tree of 
limitless depth. 

Homogeneity: Data is regular and homogenous.  
Every row of a particular table has 
the same columns with identical 
names and data types. 

Data is irregular and 
heterogonous.  Each data 
instance can have a different 
structure. 

Relations and 
Keys: 

Table joins are at the heart of a 
database schema.  Keys and 
indices are used to increase 
performance. 

Hierarchical relationships are 
easy to navigate.  Relations 
between sibling or cousin 
elements can only be done with 
XML schemas. 

Query Results: The result of a query is flat, regular, 
and homogenous. 

The result of a query can be an 
irregular and heterogeneous 
tree. 

Density: Data is dense – every column of 
every row must have a value.  
NULLS are used as placeholders 
for non-existing data. 

Data is sparse.  Because no two 
elements (even of the same 
type) need have the same 
structure, inapplicable data may 
simply be removed from the 
structure. 

Order: Data is structurally unordered.  
Rows of a table have no inherent 
ordering, although order can 
sometimes be derived from data 
values. 

Data is intrinsically ordered 
according to its location in the 
tree. 

 
SOURCE: Summarized from “XQuery from the Experts: A Guide to the W3C XML Query Language” 

(Chamberlin, Draper et al. 2003) 

The most noteworthy difference is the homogeneous nature of the relational model vs. the 

heterogeneous nature of the XML model.  This difference makes the relational model 

well-suited to instances where the data is uniform and predictable while the XML model 

is more appropriate where the data structure may change between instances. 

C. DATA STORAGE SYSTEMS 

Data storage systems can be divided into three broad categories:  data-centric, 

document-centric, and information-centric models.  The best known data storage system 



is the relational database, which conforms to the data-centric model.  Examples of 

document-centric models include spreadsheets, XML documents, and other file-based 

storage systems such as Native XML databases.  There are only a few examples of 

information-centric models, of which Neocore’s XML Information Management System 

[NEOCOREXMS] may best fit this category.  In September 2003 Xpriori™ acquired all 

intellectual property and products from NeoCore Inc. and made [NEOCOREXMS] its 

flagship product. For more information on Xpriori™ and NeoCore, see the Xpriori™ 

homepages (Xpriori 2004). 

The current OMSI deliverables do not all fit entirely within a single category; 

rather some parts are document-centric, some parts are data-centric, and some parts are a 

mixture of both.  For example, start-up and shut-down procedures, environmental 

considerations, etc. are purely document-centric.  Preventive Maintenance (PM) 

procedures and equipment schedules are purely data-centric.  PM libraries are a mixture 

of both. 

Although relational databases are fundamentally data-centric, they can store 

documents as binary large objects (BLOBs) within database fields or they can store the 

document filename in a field for reference use through hyperlinks.  These solutions are 

not without disadvantages:  manipulating the document for presentation can be difficult 

and the requirement for third-party document viewers must be taken into account. 

D. XML AS A DATA STORAGE SYSTEM 

XML is equally appropriate for both data-centric and document-centric systems.  

The “XML Family” of technologies includes document linking, style and transformation, 

and schema and validation specifications, as shown in Figure 7. 

Figure 7.  XML Technologies

SOURCE:  From “Key XML Specifications and Standards” (ZapThink 2002). 

23



XML provides significant advantages over relational databases because of its 

ability to separate data from presentation and to provide a platform-independent way of 

transporting data. 

1. Separating Data from Presentation 

The presentation of data can be separated from the data itself through the use of 

the Extensible Stylesheets Language (XSL).  XSL Transformations (XSLT) is one of the 

most common XSL technologies – it is even built into the latest versions of Microsoft’s 

Internet Explorer.  Figure 8 is an example XML document.  It is “raw” in the sense that 

no transformations have yet been applied.  Figure 9 shows the result of applying an 

XSLT – the XML document has been transformed into an XHTML document that is 

viewable with any Internet browser.  It is significant to note that the transformation can 

be applied in real-time on the client side:  each client can apply its own XSLT to achieve 

the preferred presentation. 

Figure 8.  "Raw" XML Document 

 

SOURCE:  From Altova’s XMLSpy 2004 on-line tutorial. 

 

24



Figure 9.  XML "Transformed" into HTML 

 

SOURCE:  From Altova’s XMLSpy 2004 on-line tutorial. 

2. Platform Independent Transportation of Data 

A platform independent method of transporting data is important in enterprise-

wide applications.  Many legacy systems are stove-piped, meaning that data comes in or 

out at the tops and bottoms, but there is very little cross-communication between adjacent 

systems.  Stovepipes significantly reduce the value of data because it can’t be leveraged 

for anything other than its originally intended purpose.  As work processes and planning 

efforts are commingled, the end-user is left to manually translate data (even if done 

electronically) among the varied sources.  The problem is especially exacerbated by 

proprietary and closed database structures used on different operating systems where 

electronic translation is difficult. 

XML offers a solution to this problem of cross-communication.  It is a completely 

open standard controlled by the World Wide Web Consortium (W3C) and has achieved 

wide support among software developers.  There are literally hundreds of “markup 

languages” (think of them as dialects or vocabularies which conform to the XML 

standard) currently in use:  MathML, ChemML, VoiceML, etc.  Adopting an XML 
25



26

vocabulary ensures that applications and processes can interchange and exchange 

information in a common format.   

XML Transformations allow markup languages to be “translated” between one 

another.  For example, the XYZ chemical manufacturer company could transform a 

supplier’s data conforming to ChemML into their own proprietary “ChemXYZML”.  In 

this case, the ChemML serves as a platform independent method of transporting the data.  

The supplier’s data might reside in a Unix relational database and the XYZ company data 

might reside on a WindowsNT hierarchical database…  XML lets them exchange 

information without concern for the lower level physical system details. 

E. MIDDLEWARE 

Middleware is a general class of software used by applications to transfer data 

between databases or data storage systems.  Most middleware is aimed at accessing data 

in relational databases using ODBC, JDBC, or OLE DB drivers, although some products 

exist for other types of structures such as multi-valued databases.  Middleware can also 

transfer data between hierarchical databases, including XML.  Middleware products 

range from home-grown projects to data conversion engines that cost tens of thousands of 

dollars. 

There are many middleware applications on the commercial and open-source 

market.  The “Big Four” database vendors (Oracle, IBM, Microsoft, and Sybase) all have 

integrated middleware functionality.  Stand-alone middleware applications fill particular 

niches by focusing on graphical user interfaces (GUIs), application program interfaces 

(APIs), etc. 

A form of middleware is being used by ASC-RT to synchronize the development 

and production Archibus databases.  While they chose to develop a “one-off” home-

grown middleware application, they could have chosen to implement an off-the-shelf 

product to accomplish the same goal. 

I have discarded middleware as an acceptable technology for OMSI deliverables 

because it requires specialized knowledge to maintain changing data structures and new 

information.  OMSI can be used by many different processes and it is too great a burden 

to develop subsequent middleware applications for each new use.  The challenge is to 



27

utilize a better technology that meets both the localized need of NAS Sigonella while 

better accommodating potential future needs. 

 



28

THIS PAGE INTENTIONALLY LEFT BLANK 



29

IV:   Archibus Schema for Representing OMSI Data 

A. Development History 

Database-enabled OMSI data efforts began in earnest in the Spring of 2002.  

Representatives from LANTDIV, NAS Sigonella, ASC-RT, and the Syska met to discuss 

the nature of changes to the Archibus database schema needed to support OMSI 

integration.  The addition of building systems was the first challenge. Archibus did not 

contain any building system information, although this would be essential for managing 

the OMSI information.  After setting a direction for the inclusion of building systems, we 

proceeded to identify other shortcomings of Archibus for effective management of OMSI 

information. 

1. Building Systems 

The biggest change to the Archibus database schema was the addition of building 

systems.  LANTDIV divides equipment into 12 building systems:  conveying, electrical, 

exterior circulation, exterior closure, fire suppression, HVAC, interior construction, 

plumbing, roofing, site, specialties, and structural.  A standardized system classification 

methodology was desirable in order to facilitate the decomposition of buildings into 

building systems and building systems into subcomponents. 

It was agreed that the LANTDIV systems would fit well within either the 

Construction Specifications Institute (CSI) MasterFormat or the ASTM E1557-97 

"Standard Classification of Building Elements and Related Sitework - UNIFORMAT II" 

[UNIFORMATII]. 

UNIFORMAT II is a National Institute of Standards and Technology (NIST) 

supported format for classifying building elements and related sitework.  Elements are 

defined as major components common to most buildings and usually perform a given 

function, regardless of the design specification, construction method, or materials used.  

UNIFORMAT II ensures consistency at all stages of a building life cycle – planning, 

programming, design, construction, operations, and disposal. 

UNIFORMAT II standardizes four levels of classification, as shown in the 

following table: 



30

Table 3.  UNIFORMAT Classification Levels  
 

Description 

Level 1 This level, the largest element grouping, identifies Major Group Elements, such 
as the Substructure, Shell, and Interiors, etc. 

Level 2 This level subdivides Level 1 Major Group Elements into Group Elements.  The 
Shell Major Group, for example, includes the Superstructure, Exterior Closure, 
and Roofing Groups Elements. 

Level 3 This level breaks the Level 2 Group Elements further into Individual Elements.  
The Exterior Closure Group Element, for example, includes Exterior Walls, 
Exterior Windows, and Exterior Doors Individual Elements. 

Level 4 This proposed level breaks the Level 3 individual Elements into yet smaller sub-
elements.  Standard Foundation sub-elements, for example, include wall 
foundations, column foundations, perimeter drainage, and insulation. 

 

 UNIFORMAT II’s most significant benefit is its applicability to a robust group 

of users.  Owners, developers, programmers, cost planners, project managers, schedulers, 

architects and engineers, operating and maintenance staff, manufacturers, specification 

writers, and educators should all find the classification useful.  For these reasons, it was 

decided that Archibus would categorize building systems by implementing 

UNIFORMAT II. 

The OMSI specification was a “Scope of Work” text that described the 

information required in an OMSI delivery.  As a starting point, each paragraph 

requirement was mapped to an Archibus table if it existed.  If no Archibus table existed 

to hold the data requirement, it was flagged for later consideration to create new Archibus 

tables.  

2. Document Management 

The ability to manage documents did not exist within the framework of Archibus.  

However, it was clear that documents were essential to the creation of OMSI 

deliverables.  As an intermediate solution to a full-fledged document management system 

(DMS), we agreed to create a database reference to documents stored on the network file 

system as a URL.  This would allow CAFM users to query through building system data 

to find the appropriate URL, which could then be opened by its native application (i.e. 

Microsoft Word, Adobe Reader, etc.) through the use of a stored application (e.g. script) 



in Archibus.  A better solution for incorporating DMS functionality within the framework 

of OMSI deliverables is discussed below. 

B. OMSI Entity Relationship Diagram 

It is beneficial to diagram the entity relationships between the major OMSI data 

items.  The diagram is useful for creating the database and performing validation such as 

normalization and relational integrity constraints. 

Figure 10 uses IDEF1X [IDEF1X] notation to describe the OMSI data model as 

entities that have attributes and participate in relationships.  IDEF1X is typically used to 

create a graphical information model which represents the structure and semantics of 

information within an environment or system. 

Each relation (i.e. table) is shown as a rectangle with its name directly above and 

its attributes inside.  Identifier dependency, shown by rounded corners, indicates a 

constraint between two related entities that requires the primary key in one (child entity) 

to contain the entire primary key of the other (parent entity).  Identifying relationships 

(those in which every attribute in the primary key of the parent entity is contained in the 

primary key of the child entity) are shown as solid lines and non-identifying relationships 

are shown as dashed lines.  The use of this notation will be useful in developing 

equivalent XML schemas later in the thesis.  Relationships are show as lines with the 

following cardinality notations: 

 One to zero or more 

 One to one or more 

 One to zero or one 

 One to exactly N 

 Zero or one to zero or more

 Zero or one to one or more 

 Zero or one to zero or one 

 Zero or one to exactly N 

31



 

 

 

Figure 10.  Entity Relationship Diagram for OMSI 

 

Not all the entities required to make complete OMSI deliverables have been 

included in Figure 11.  In this sense, the results of my thesis are not production-ready (i.e. 

immediately ready for use), even if the additions are straightforward and uncomplicated.  

One reasoning for this incompleteness is the changing data requirements of Archibus.  I 

did not model subcomponents of building areas (such as floors, rooms, and areas), 

equipment models and manufactures, equipment parts and warranties, or employee skill 

levels.  Nonetheless, these entities are straightforward and the model can be easily 

extended include them.  In addition, Navy Region Europe’s Archibus Program Manager 

must decide on the scope of the Archibus schema changes that remain economical, 

considering the full life-cycle costs of propagating the changes to all European 

installations. 

32



C. Database Relationships Diagram 

In order for Archibus to receive OMSI deliverables, a database schema was 

developed using the Entity Relationship diagram in the previous section.  This schema 

was created with the cooperation and assistance of ASC-RT, although the current 

production Archibus schema may differ.  The Archibus schema relationships diagram is 

shown in Figure 10.  Again, there are additional tables that must be populated by a 

complete OMSI deliverable, but they are uninteresting and not complicated.   

Figure 11.  Archibus Database Schema for OMSI 

 

A list of the tables in the database schema, along with their brief descriptions, is 

shown in Table 4. 

33



34

Table 4.  Database Table Descriptions  
 

Table Description 

AFM_sys_1 

AFM_sys_2 

AFM_sys_3 

AFM_sys_4 

SYSTEM LEVEL X.  The UNIFORMAT II system levels are 
represented as a set of related tables that are part of a strict 
hierarchy.  See Table 3 for a more detailed description. 

AFM_bl BUILDING.  This represents a physical building on an installation.  
It also represents abstract items such as roads, antennas, etc. 

AFM_bl_sys BUILDING SYSTEM.  Each building can contain building 
systems such as HVAC, Fire Suppression, Plumbing, etc.  A 
building system is a collection of equipment items that work in an 
interconnected fashion. 

AFM_bl_sys_level BUILDING SYSTEM LEVEL.  Building systems are not all at the 
same UNIFORMAT II level.  Most systems are at Level 3 but 
some systems are at Level 2 and Level 4. 

AFM_bl_sys_doc BUILDING SYSTEM DOCUMENT.  Each building system has 
supporting documentation such as Safety Instructions, Normal 
Operating Procedures, etc. 

AFM_eq_type EQUIPMENT TYPE.  Similar equipment items are grouped into an 
equipment type such as MOT (motor), PUM (pump), etc. 

AFM_sys_eq_type SYSTEM EQUIPMENT TYPE.  Each equipment type is 
associated with one or more System Level 4s.   

AFM_eq EQUIPMENT.  This represents any item that requires preventive 
maintenance.  It is often the smallest piece of equipment that can 
receive “stand-alone” maintenance. 

AFM_pms PM SCHEDULE.  This represents a one-to-one association 
between a piece of equipment and one of its required PM 
Procedures.  Equipment can have many required PM procedures 
and the same PM procedure can be assigned to many pieces of 
equipment. 

AFM_pmp PM PROCEDURE.  This represents a maintenance action that can 
be performed. 

AFM_pmps PM PROCEDURE STEP.  This represents a discrete step of a PM 
procedure.  In almost all cases, there is only one step per PM 
Procedure – this simplifies many aspects of PM management. 

AFM_pmpstr PM PROCEDURE TRADE.  This represents a trade resource 
requirement needed to complete a PM Procedure Step.   

 



35

The schema is straightforward, with the exception of the AFM_bl_sys_level and 

AFM_sys_eq_type tables.  The AFM_bl_sys_level is necessary because a “Building 

System” (a record in the AFM_bl_sys table) may reside at the UNIFORMAT Level 2, 

Level 3, or Level 4.  Given the nature of UNIFORMAT’s strict hierarchy, it was 

preferred to model each level as its own table in the database.  This would allow the 

systems to be easily extended in the future with a Level 5.  However this created a 

problem with an AFM_bl_sys’s primary keys.  Specifically, in order  to uniquely identify 

an AFM_bl_sys record, you need a primary key field for bl_id and either sys_level_2, 

sys_level_3, or sys_level_4.  A primary key can never have a NULL value, and so the 

lack of a Level 3 or Level 4 causes a problem.  To solve this issue of NULL primary 

keys, we could have put “pseudo-null” values in the AFM_sys_x tables, however this was 

discounted as an inelegant solution and the decision, and the AFM_bl_sys_level table 

was added instead. 

The AFM_sys_eq_type table is used to ensure that the same equipment type is not 

inadvertently assigned to two different Level 4s albeit with a different name (perhaps due 

to a typographical error.) 

D. DOCUMENT-CENTRIC INFORMATION 

For the purposes of schema modeling, it is useful to distinguish between data- and 

document-centric information.  However, this distinction is not always well established.  

Data-centric information is sometimes known as “structured” data, while document-

centric information is sometimes known as semi-structured data.  Given this, the structure 

of information can often lend clues to the nature of the information itself.  When 

structures are rigid or applications that use the information demand a rigid structure (i.e. 

homogeneous), we can label the information data-centric.  When the structures are free-

form (though nonetheless following constraints) and information can be created within 

heterogeneous structures, we might label the information document-centric.  There is 

undoubtedly a large domain of mixed information where data- and document-centric 

entities are intermixed.  

Another difference between data- and document-centric information is the nature 

of how the information itself is used.  Data-centric information tends to revolve around 



36

data transport,  that is, information must be transported between applications for 

aggregation, reporting, and analysis.  Document-centric information, on the other hand, 

primarily tends to get transformed rather than transported, that is, information is 

repurposed for differing end-user consumption. 

The information described in the database relationship diagram (Figure 11) is 

clearly all data-centric. A database is the prototypical data-centric storage system.  

However, the bl_sys_doc entity, which contains a significant portion of OMSI 

information, obviously contains reference to document-centric information by way of the 

document filename URL.  These documents include: 

• Training Recommendations 
• System Description 
• Start-Up and Shutdown Procedures 
• Normal Operating Procedures 
• Alternate Operating Procedures 
• Emergency Operating Procedures 
• System Flow Diagrams 
• Environmental Considerations 
• Operator Servicing Requirements 
• Safety Instructions 
• Troubleshooting Guides and Diagnostic Techniques 

If these documents were to be represented as an XML document (perhaps as 

XHTML, DocBook, or a new non-standard markup language) they could be stored 

directly in a database.  Each of the Big Four database vendors have created solutions for 

converting XML documents into their relational tables.  Oracle’s “XML SQL Utility”, 

IBM’s “XML Extender”, Microsoft’s “OPENXML row set”, and Sybase’s 

“ResultSetXML Java class” allow for the automatic conversion of XML data into and out 

of relational databases (Dayen 2001). 

Nonetheless, it would require considerable work to place the document entities 

directly into Archibus and perform the necessary programming.  Such a solution would 

also require rework if Archibus were converted to a different database engine.  To avoid 

these prospects, I have proposed to create a field in Archibus to hold a URI that refers to 

an XML fragment or document that can be rendered in a consumer-specific presentation.  

The structure of this XML fragment or document will be discussed in Chapter VI. 

 



37

Having developed and examined a relational data model for representing OMSI 

information in Archibus, we can now use its Entity Relationship diagram and general 

model rules to develop an equivalent XML data model.  In the following chapter we will 

discuss the schema technologies for describing XML data models, schema structure 

considerations, and modeling rules.  With these in mind, we will create an XML schema 

that represents the same information that Archibus holds.   



38

THIS PAGE INTENTIONALLY LEFT BLANK 



39

V:   XML SCHEMA FOR REPRESENTING OMSI DATA 

A. BACKGROUND 

Chapter III discussed the requirements for well-formed XML.  Yet well-formed 

XML places no restrictions on the structure of the XML document – and it is structure 

that provides semantic context to the information.  While database schemas are an 

intrinsic feature of relational databases, XML uses extrinsic technologies called XML 

schemas to define the structure of XML documents.  XML schemas, by defining 

structure, give rise to XML vocabularies or XML markup languages. 

While there are numerous XML schema technologies, we only address the more 

popular ones:  DTD, XML Schema, and RELAX NG.  Some schema technologies have 

been standardized by the W3C (such as DTD and XML Schema) while others (e.g. 

RELAX NG) are de facto standards that are in the process of formal standardization. 

The XML Schema presented here is able to represent all the information 

described by the Archibus database schema in the previous chapter.  This includes a 

majority of the OMSI data required to support present-day deliverables needed by 

NASSIG.  In this vein, the schema is appropriate for use in an XML environment while at 

the same time inserting structure suitable for conversion to a database.  No attempt was 

made to represent each and every database schema object because, as discussed below, it 

is not necessary to explicitly represent all relational data entities and attributes in an XML 

schema.  We call the vocabulary specified by this XML Schema OMSIML. 

B. SCHEMA TECHNOLOGIES 

XML schemas allow for additional control of XML documents beyond the XML 

syntax of being well-formed.  Schemas can be used to validate an XML document against 

markup structure, identity integrity (e.g. key relations), data type constraints, and 

business rules.  While there are many schema technologies no single one can be 

considered the “overall best”; each has some strength that gives rise to it being the best 

for a specific application. 



40

1. DTDs 

Document type declarations are defined by [XML1.0] to contain or point to 

markup declarations that provide a grammar for a class of documents.  This grammar is 

known as document type definitions, or DTDs, and is the only schema embedded in 

[XML1.0] itself.  XML Processors (a software module used to read XML documents and 

provide access to their content and structure) are classified as “validating” and “non-

validating”.  [XML1.0] requires that “validating processors must, at user option, report 

violations of the constraints expressed by the declarations in the DTD, and failures to 

fulfill the validity constraints given in this specification.”  This will allow applications to 

off-load the validating function to a standard XML Processor. 

While DTDs are an attractive technology for validating OMSIML documents, 

they have some weaknesses that make them generally unsuitable for use in conjunction 

with databases.  The most glaring absence is data typing.  DTD-specified elements have 

only four types of content models:  Empty, Element, Mixed, and Any.  These types 

specify whether an element may be empty, have text, have children elements, or have a 

combination of text and children.  While elements that contain children can be specified 

as sequences or choices, there is no way to validate data types.  This becomes important 

when using the XML to populate databases as will be done with OMSIML.  DTD 

attributes have better typing, but they are still limited to just nine attribute types 

(CDATA, ID, IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, NMTOKENS, and 

Enumerated List.) 

DTDs also have a weakness in their method of element referencing.  DTD’s ID 

and IDREFs can be used for modeling relationships but unfortunately IDs must be unique 

within the XML document.  This makes it difficult to model such things as database auto-

numbered primary keys in two or more tables where there would surely be duplicate “1”, 

“2”, “3”, etc. values. 

Another weakness of DTDs is their syntax:  they are not well-formed XML.  

While this doesn’t currently create a problem for OMSIML, it has the unfortunate side-

effect that DTDs cannot be accessed by XML Processors or modified by XML 

transformations such as XSLT. 



41

2. XML Schema 

The May 2001 W3C Recommendation XML Schema (consisting of Part 0: 

Primer, Part 1: Structures, and Part 2: Datatypes) [XMLSCHEMA] defines another 

schema vocabulary.  “XML Schema” should not be mistaken for “XML schema” (note 

the capital “S”) although the choice of name is certainly confusing.  [XMLSCHEMA] has 

gained widespread use in the XML industry and is also a basis for the type system of 

other XML technologies such as XQuery, XPath 2.0 and XSLT 2.0 drafts. 

[XMLSCHEMA], unlike DTDs, are represented using well-formed XML syntax 

(i.e. they are XML documents).  This allows them to be processed using any XML 

Processor or transformed using XSLT.  This isn’t currently a necessity for use with 

OMSIML, but it does provide some measure of protection against future changes. 

It is beyond this thesis to provide a complete description and explanation of 

[XMLSCHEMA].  It is sufficient to recognize that [XMLSCHEMA] has strong data 

typing as well as cardinality control, and it is this, combined with a method of intra-

document referencing, that is essential to validating XML documents for use with 

relational databases. 

3. RELAX NG 

 The Organization for the Advancement of Structured Information Standards 

(OASIS) is a not-for-profit, international consortium that drives the development, 

convergence, and adoption of e-business standards.  In 2001, OASIS established a “Call 

for Participation” to establish a Technical Committee (TC) for creating a specification of 

a schema language for XML based on the TREX proposal.  The TC eventually created 

RELAX NG [RELAXNG], a "specification for a language that validates XML 

documents, otherwise characterized as a simple schema language for XML which focuses 

upon description and validation of the structure and content of an XML document 

without attempting to specify application processing semantics” (OASIS 2003).  It is 

billed as a simple, easy-to-learn schema language that includes both an XML and 

compact non-XML syntax.  It supports XML namespaces, treats attributes uniformly 

within elements (so far as possible), has unrestricted support for unordered and mixed 

content, and can partner with a separate data typing language such as [XMLSCHEMA].  



42

[RELAXNG] is also included as Part 2 of the ISO 19575 Document Schema Definition 

Language (DSDL) standard. 

[RELAXNG] has some advantages over [XMLSCHEMA] such as being able to 

describe content dependencies (i.e. where elements or attributes are valid based on the 

value/presence of other elements or attributes).  However, [RELAXNG] is missing one 

important capability necessary when validating XML for use with relational data, namely  

imposing identity constraints.  As will be discussed later, identity constraint is an 

important method for intra-document referencing. 

C. SCHEMA STRUCTURE CONSIDERATIONS 

There are a few general considerations that should be given to any schema 

structure.  While it is difficult to generate an exhaustive cookbook of guidelines, we 

discuss three reflections that provided significant improvement to the schema structure:  

the use of elements vs. attributes, the extent of hierarchical decomposition, and the 

concept of normalization of relations within the document.  A brief examination of 

hierarchical composition led to an assessment of relation representation in XML which 

will be discussed in the section on modeling rules. 

1. Elements vs. Attributes 

On the surface it might seem an inconsequential act of schema construction to 

decide on when to use elements or attributes.  After all, any attribute can be modeled as 

an element without changing the semantics of the schema.  Nonetheless it is necessary to 

give considerable thought to determining a guideline for choosing element vs. attribute.  

The Department of the Navy first promulgated an XML Developer’s Guide in October 

2001.  In April 2002 the XML Working Group of the U.S. Federal CIO Council’s 

Architecture and Infrastructure Committee promulgated a draft Federal XML 

Developer’s Guide (U.S. Federal CIO Council) [XMLGUIDE] which is a DON-approved 

adaptation of the consensus draft of the DON XML Developer’s Guide v1.1. 

[XMLGUIDE] provides direction on the choice of element vs. attribute as well as 

other useful rules for component naming and case convention, schema design, and 

document versioning.  [XMLGUIDE] uses the terms MUST, MUST NOT, REQUIRED, 

SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and 



43

OPTIONAL to denote the nature of conformance.  Given the presence of “must” 

conformance, the guide should be reviewed in its entirety prior to implementing 

OMSIML in a wide-scale production environment.  [XMLGUIDE] provides the 

following direction on element vs. attribute selection: 

The use of attributes SHOULD be carefully considered.  Attributes 
SHOULD only be used to convey metadata that will not be parsed.  
Attributes, if used, SHOULD provide extra metadata required to better 
understand the business value of an element. 

Some additional guidelines are: 

- Attribute values SHOULD be short, preferably numbers or 
conforming to the XML Name Token convention. Attributes 
with long string values SHOULD NOT be created. 

- Attributes SHOULD only be used to describe information units 
that cannot or will not be further extended or subdivided. 

- Information specific to an application or database MUST NOT 
be expressed as values of attributes (see Section 4.3.1). 

- Use attributes to provide metadata that describes the entire 
contents of an element. If the element has children, any 
attributes should be generally applicable to all the children. 

In consideration of [XMLGUIDE]’s admonitions against attribute use, we decided 

to use attributes only in the instance of adding auto-numbered identifiers to be used as 

primary keys in the relational database.  However, attributes were not used when 

referencing these auto-numbered identifiers in other elements for the purpose of 

maintaining referential integrity.  This not only complies with [XMLGUIDE], but more 

importantly, ensures that the schema can be easily extended in the future. 

There are also other considerations for deciding on elements vs. attributes.  If 

elements are considered the containers for data, attributes can provide additional 

information on the content of the element.  Chris Brandin discusses six pitfalls that often 

occur when modeling information with XML (Brandin 2003): 

- Inadequate context describing what a data element is (incomplete use of 
tags) 

- Inadequate instructions on how to interpret data elements (incomplete 
use of attributes) 

- Use of attributes as data elements (improper use of attributes) 



44

- Use of data elements as metadata instead of using tags (indirection 
through use of name/value pairings) 

- Unnecessary, unrelated, or redundant tags (poor hierarchy construction) 

- Attributes that have nothing to do with data element interpretation 
(poor hierarchy construction or misuse of attributes) 

The difficulty with XML modeling lies with the fact that two semantically equal models 

can require very different levels of effort to maintain.  The pitfalls discussed by Brandin 

can certainly cause significant maintenance efforts as the model is progressively refined.  

The schema we present here have minimized the use of attributes and, accordingly, avoid 

Brandin’s pitfalls.  

2. Hierarchical Composition 

Hierarchical composition is a fundamental construct of the XML data model.  It 

creates a parent/child/sibling context that defines inherent relations in the data.  Using 

hierarchical composition we simplify the OMSIML schema design by avoiding the 

complication of representing relations between non-hierarchical entities.  This makes for 

an elegant schema that provides a straightforward method of ensuring the consistency and 

integrity of data. 

Hierarchical composition can be taken too far when it becomes awkward to 

traverse the tree from the root to a leaf many levels away.  This is especially true when 

creating XML transformations that require XPath statements.  The guideline adopted is to 

limit the schema to five levels of hierarchy but, in a few instances, it was determined that 

the elegance of using more levels outweighed the burden of traversing the nodes in 

XPath. 

3. Normalization 

The concept of normalization is deeply rooted in the relational database realm. 

Database designers recognize that while there can be many ways to model the same data, 

not all relations are equally attractive.  Some relations can create instances where 

changing the data can have undesirable consequences.  These consequences are called 

“modification anomalies” and through careful consideration they can be avoided 

whenever desired.  The process of redefining relations to avoid these anomalies is called 

“normalization”. 



45

Normalization of XML schemas is also a desirable process.  [N.B. Normalization 

of XML schemas is not to be confused with normalization of XML documents, which 

entails the removal of whitespace to facilitate document comparison.]  Normalized 

schemas can eliminate ambiguity of data expression, minimize redundancy, and help 

maintain data consistency.  Will Provost developed guidelines for designing XML 

Schemas that achieve these goals in “Normalizing XML” (Provost 2002).  The following 

paragraphs highlight the aspects of Provost’s guidelines relevant to OMSIML. 

First normal form is inherent for all valid relations (tables) in a relational database 

– it requires that attributes be single valued and each tuple (record) must have the same 

attributes in the same order.  These requirements are clearly not necessary for XML given 

its heterogeneous nature which allows great flexibility in modeling data. 

Second normal form requires that all of a relation’s nonkey attributes be 

dependent on all of its keys.  Third normal form requires there be no transitive 

dependencies among a relation’s keys.  Together, these two normal forms translate to the 

common vernacular of “nonkey attributes must depend on the keys, the whole keys, and 

nothing but the keys.”  The importance of second and third normal forms is their 

avoidance of insertion and deletion anomalies.  They ensure that tuples can be added 

independently of one another and that as tuples are deleted there is no loss of data 

dependency information.  Second and third normal form can be accomplished in XML 

Schemas through the use of the key() and keyref() definitions.  Unfortunately, XML is 

not as straightforward as relational data in the application of second and third normal 

form.  It is not always desirable to perform this type of normalization.  While relational 

data keys must be unique within the scope of the relation, XML Schema keys are unique 

within the scope of an element and XML Schema keyrefs cannot be defined to traverse 

multiple scopes.  XML Schema designers must take care to ensure that all desired 

associations are asserted even when complicated by differing scopes.  Provost offers 

some design standards for avoiding these issues. 

Fourth normal form requires that a relation have no multi-valued dependencies.  

Multi-value dependencies are instances where a relation has two or more nonkey 

attributes that are determined by the same key but the nonkey attributes are not dependent 

on each other.  Failure to maintain fourth normal form requires additional tuples to avoid 



46

misleading assumptions about nonkey dependencies.  This is patently inefficient and can 

create update anomalies.  Fourth normal form is easily achieved by placing the non-

dependent attributes into separate tables.  XML’s heterogeneous nature obviates the need 

to maintain fourth normal form. Without the need to preserve rectangular structure, XML 

documents can easily remain consistent in the presence of multi-valued dependencies. 

D. MODELING RULES 

In addition to the schema structure considerations of the previous section, there 

are also modeling rules that can help generate an elegant XML schema based on a known 

relational data model.  Prior to beginning work on an XML schema for OMSI, we created 

a relational model for holding the OMSI information.  This model is desirable as a 

guideline for developing the XML schema for two reasons:  leveraging an existing model 

is less effort than reinventing the wheel, and similar schemas enable the transformation 

from XML to Archibus in an easier fashion.  This class of schema translation is generally 

known as “schema conversion”.  It is different from “schema matching” (which 

transforms data between two known schemas) although a converted schema would be an 

easy candidate for schema matching as well. 

The NIKE (Nittany Information, Knowledge and wEb) Research Group published 

“Schema Conversion Methods between XML and Relational Models” (Lee, Mani et al. 

2002) which detailed methods of schema conversion.  Their challenge was to develop 

methods which capture both the structure of the schema as well as the semantic 

constraints.  One of these methods, the Constraints-based Translation Algorithm (CoT) 

“capture[s] the overall picture of relational schema where multiple tables are 

interconnected … [by] consider[ing] inclusion dependencies during the translation, and 

merg[ing] multiple inter-connected tables into a coherent and hierarchical parent-child 

structure in the final XML schema.”  While such a rigorous algorithm was unjustified 

given the scope of this thesis, it nonetheless represents an interesting approach to 

automating the work required to generate XML schemas. 

In this section we discuss a modeling “recipe” for developing an XML schema 

from a relational schema and approaches for representing relationships in XML.  These 

two considerations were essential to the development of OMSIML:  whatever XML 



47

content is created by OMSI deliverables, some of its information has ultimately to be 

stored in Archibus.  Given the existence of a relational schema for this information, it is 

necessary to create an equivalent schema in XML and create transformations between the 

two. 

1. Modeling Recipes 

“Professional XML Databases” (Williams, Brundage et al. 2000) offers the 

following 11 rules for developing an XML structure from a relational database: 

Rule 1:  Choose the Data to Include. 
 Based on the business requirement the XML document will be 

fulfilling, we decide which tables and columns from your 
relational database will need to be included in our documents. 

Rule 2:  Create a Root Element. 

 Create a root element for the document. We add the root element 
to our DTD, and declare any attributes of that element that are 
required to hold additional semantic information (such as routing 
information). Root element's names should describe their 
content. 

Rule 3:  Model the Content Tables. 
 Create an element in the DTD for each content table we have 

chosen to model. Declare these elements as EMPTY for now. 

Rule 4:  Modeling Non-Foreign Key Columns. 
 Create an attribute for each column we have chosen to include in 

our XML document (except foreign key columns). These 
attributes should appear in the !ATTLIST declaration of the 
element corresponding to the table in which they appear. Declare 
each of these attributes as CDATA, and declare it as #IMPLIED 
or #REQUIRED depending on whether the original column 
allows NULLS or not. 

Rule 5:  Add ID Attributes to the Elements. 
 Add an ID attribute to each of the elements you have created in 

our XML structure (with the exception of the root element). Use 
the element name followed by ID for the name of the new 
attribute, watching as always for name collisions. Declare the 
attribute as type ID, and #REQUIRED. 

Rule 6:  Representing Lookup Tables. 
 For each foreign key that we have chosen to include in our XML 

structures that references a lookup table: 



48

1. Create an attribute on the element representing the 
table in which the foreign key is found. 

2. Give the attribute the same name as the table 
referenced by the foreign key, and make it 
#REQUIRED if the foreign key does not allow 
NULLS or #IMPLIED otherwise. 

3. Make the attribute of the enumerated list type. The 
allowable values should be some human-readable 
form of the description column for all rows in the 
lookup table. 

Rule 7:  Adding Element Content to Root elements. 
 Add a child element or elements to the allowable content of the 

root element for each table that models the type of information 
we want to represent in our document. 

Rule 8:  Adding Relationships through Containment. 
 For each relationship we have defined, if the relationship is one-

to-one or one -to-many in the direction it is being navigated, and 
no other relationship leads to the child within the selected subset, 
then add the child element as element content of the parent 
element with the appropriate cardinality. 

Rule 9:  Adding Relationships using IDREF/IDREFS. 
 Identify each relationship that is many-to-one in the direction we 

have defined it, or whose child is the child in more than one 
relationship we have defined. For each of these relationships, add 
an IDREF or IDREFS attribute to the element on the parent side 
of the relationship, which points to the ID of the element on the 
child side of the relationship. 

Rule 10:  Add Missing Elements. 

 For any element that is only pointed to in the structure created so 
far, add that element as allowable element content of the root 
element. Set the cardinality suffix of the element being added to 
*. 

Rule 11:  Remove Unwanted ID Attributes. 
 Remove ID attributes that are not referenced by IDREF or 

IDREFS attributes elsewhere in the XML structures. 

Although these rules are for generating DTDs as opposed to XML Schemas, the 

logic is certainly valid, and relevant to developing OMSIML.  Many of the rules are 

obvious, but Rules 8 and 9 (adding relationships) will merit further discussion.   



49

Ron Bourret has also written extensively on the topic of mapping DTDs and 

relational database schemas (Bourret 2002).  He classified two mapping strategies (table-

based mapping and object-relation mapping) that are good candidates for mapping data-

centric XML documents to relational databases.  Bourret’s approach is much more 

methodical than the recipe of Williams, Brundage et al, though it is more detailed than 

OMSIML warrants. 

2. Representing Relationships in XML 

Jeff Ryan describes three methods for representing relationships in XML in his 

article “Modeling One-To-Many Relationships With XML” (Ryan 2003).  The first two 

methods are containment and intra-document references.  Containment is the case of one 

element being contained within another element.  Intra-document references are 

key/keyrefs (or ID/IDREFs with DTDs) that allow pointing within the XML document to 

be validated by using a schema.  The third method, inter-document relations, can also be 

used to maintain relationships between XML documents.  Similar to intra-document 

relations, it allows a pointer to an entity, but in a separate XML document.  Its only 

notable advantage over intra-document relations is flexibility, which is not specifically 

needed within the scope of OMSIML. 

Containment is the “stronger” and more elegant method of representing 

relationships if the semantic structure of the model permits.  However, it can also be 

slower in some applications (Ruyak, Mathwani et al. 2003) and containment and 

normality can be mutually exclusive, since keys are the only way to enforce normality of 

many-to-many relationships.  Intra-document referencing requires more thought to 

develop the schema but it can be extremely flexible.  Table 5 rates the key decision 

factors for choosing containment vs. intra-document referencing. 



50

Table 5.  Comparison of Containment and Intra-document Referencing 

 Containment Intra-document Reference 

Processing Speed† Good Excellent 

Data Passing Excellent Good 

Flexibility Fair Good 

Ease of Use Excellent Good 
 
 † Processing speed comparison is based on results presented in “Optimizing XML Processing for 

Performance” (Ruyak, Mathwani et al. 2003)  

SOURCE: Adapted from “Modeling One-to-Many Relationships with XML”  (Ryan 2003) 

The rules presented in the modeling recipe of the previous section provide some 

useful guidance about when to choose containment vs. intra-document reference in the 

cases where the model demands a specific choice.  But there are also many instances 

when either decision is semantically correct.  In such cases, containment may be 

preferred for data passing or ease of use while intra-document reference may be preferred 

for processing speed or flexibility.  Containment may also be avoided in cases where the 

hierarchical composition creates a burden for traversing the nodes or accessing the leaves 

with long XPath statements. 

E. OMSI XML SCHEMA 

The OMSI XML Schema diagram shown in Figure 12 describes the OMSIML 

model.  The complete documentation of the XML Schema can be found in Appendix B. 

This schema was developed using the IDEF1x diagram of the OMSI entity 

relationships.  This ensures that the XML schema is modeled in a consistent and efficient 

manner by considering the presence of identifier dependency entities and identifying 

relations.  As discussed in Chapter IV, the identifier dependency parent entities have all 

their primary keys contained in the child entity.  This creates an obvious choice for 

representing the relationship through containment because the primary keys can be left 

out of the children entities and regenerated (if need be) from the parent entity.  Non-

identifier dependency entities merit special attention because containment must be 

augmented with keys to ensure the non-identifying relations are modeled properly. 



51

Starting with the model of the UNIFORMAT system levels, these levels are a 

clear hierarchical dependency and can be appropriately modeled with containment.  We 

chose to limit the containment to just the sys_levels in order to ensure a sustainable 

model that can easily be adapted with additional levels in the future.  The eq_type and 

sys_eq_type  were modeled as their own elements (EquipmentTypes and 

SystemEquipmentTypes) and keys (XML Schema keys) were created on their primary 

keys for use with keyrefs in the appropriate entities.  bl_sys_level was also represented as 

its own entity (BuildingSystems) because these are seen as a master list developed by the 

maintenance organizations and OMSI developers are not be free to create their own.  

Again, a key was created for use with keyrefs in related entities. 

The Building model was generated using containment for the identifier 

dependencies (bl_sys and bl_sys_doc).  The eq entity was added because in the real-

world model, equipment is clearly contained in buildings.  Non-identifying relations were 

modeled to to eq using keyrefs to the appropriate keys.  The pms entity models a many-

to-many intersection between the pmp and eq entities to capture the concept of PM 

requirements for equipment.  This required embedding the appropriate PMId keyref in 

EqItem to represent the relationship. 



Figure 12.  OMSI XML Schema Diagram 

 
 

 
 

In this chapter we have created an XML data model for representing OMSI 

information.  The corresponding schema will be used to create instance documents that 

hold OMSI deliverables.  In the next chapter we will address the storage of collections of 

52



53

these instance documents by using the file system, a relational database, or a native-XML 

database.  We will provide a cursory review of XML database products and suggest a 

storage mechanism for both data- and document-centric information.   



54

THIS PAGE INTENTIONALLY LEFT BLANK 
 



VI:   STORAGE OF XML-BASED OMSI INFORMATION 

A. STORAGE METHODS 

There are three basic methods for storing XML documents:  file systems, 

relational databases, and native XML databases.  Ronald Bourret discusses these 

mechanisms in-depth in his seminal “XML and Databases” (Bourret 2003).  In a strict 

sense, the use of a file system for storing XML documents isn’t a storage method by 

itself.  The “system” must include some means of adding, modifying, deleting, and 

querying the documents and it is only through other applications (even if they’re built 

into the operating system) that these actions can be done with a file system.  Relational 

and native XML databases, however, include such add, modify, delete, and query 

functions internally in their application.  

1. File Systems 

File systems can easily store and access XML documents.   Metadata can be 

attached to the document itself or a directory structure can be used to imply semantics.  

For example, a directory structure of the form 

 BuildingNumber10 

  BuildingSystemHVAC 

   DocumentStartupProcedures 

  · 

  · 

  · 

 BuildingNumber11 

makes it clear that Building System documents are grouped on Building Systems, which 

are in turn grouped on Buildings.  With this knowledge, we can mentally query the 

metadata implied by the directory structure. 

While it is easy to add or delete documents, file systems do not include a way of 

querying XML documents, with the exception of executing simple text searches.  It is 

possible to build an application that could access these documents and apply XML 

technologies such as XPath to better query them, but it is clear that such a solution would 

be extremely cumbersome as well as quite difficult to maintain and extend. 

55



56

2. Relational Databases 

Relational databases can be used to store XML documents using either of two 

methods.  The first method is to simply store the document in a table using a CLOB or 

BLOB and creating an API that can store, retrieve, and delete the entities.  For example, 

XML DB, a feature of the Oracle Database, provides a native method of XML query, 

update, and transform.   XML documents can be loaded into XMLType tables or 

XMLType columns in a database using Oracle’s Procedural Language/SQL (PL/SQL) or 

JDBC.  The other major database vendors (e.g. Microsoft, Sybase, etc.) include a similar 

manner of handling natively XML documents stored in a database table or column. 

The second method of using a relational database to store XML documents is to 

create an equivalent relational schema to model the XML document.  Chapter IV 

discussed the schema conversion methods of Lee, Mani, et al.  These rules can be applied 

to convert the XML document to a relational schema and store the content in any 

relational database.  While such a process is straightforward and there exist algorithms 

for performing the conversion, this method is not without a downside.  Once the XML 

document is represented as relational data there is no possibility of applying other XML 

technologies such as XSLT, XQuery, and XPath.  Perhaps more importantly, however, is 

the problem of round-tripping.  Round-tripping is a situation in which an original XML 

document is put somewhere (in this case, a relational database) and then retrieved.  One 

would expect the retrieved document to be identical to the original after taking the “round 

trip”, but unfortunately, this is often not the case.  Schema conversion is not a lossless 

process and semantics can be lost along the way.  Although this problem is not 

particularly troublesome for data-centric XML, it can be disastrous for document-centric 

XML where the user expects the presentation of the document to be the same after round-

tripping. 

3. Native XML Databases 

Native XML databases are the utopia for storing XML documents.  First defined 

by the XML:DB Initiative, Kimbro Staken offers the following description of a native 

XML database in “Introduction to Native XML Databases” (Staken 2001): 

- Defines a (logical) model for an XML document -- as opposed to the 
data in that document -- and stores and retrieves documents according 



57

to that model. At a minimum, the model must include elements, 
attributes, PCDATA, and document order.  Examples of such models 
are the XPath data model, the XML Infoset, and the models implied by 
the DOM and the events in SAX 1.0.  

- Has an XML document as its fundamental unit of (logical) storage, just 
as a relational database has a row in a table as its fundamental unit of 
(logical) storage.  

- Is not required to have any particular underlying physical storage 
model.  For example, it can be built on a relational, hierarchical, or 
object-oriented database, or use a proprietary storage format such as 
indexed, compressed files. 

This definition is quite useful because it requires that the “database” act on whole 

XML documents using a document-like model such as XPath, but it doesn’t require a 

specific database technology.  Clearly, native XML databases go beyond the data store.  

Jim Tivy suggests that one can recognize a native XML database by examining how the 

data is modeled to the programmer (Chamberlin, Draper et al. 2003).  Native XML 

databases use a model that respects the structure of XML in addition to working with 

other XML technologies such as XML Schema, XPath, XQuery, etc.  This fits quite well 

with the XML:DB Initiative’s definition. 

In addition to having XML documents (the fundamental unit in the data store), 

native XML databases also have “collections”.  These collections, analogous to relational 

tables, are also a defining feature.  Relational tables are constrained so that each record in 

the table must conform to the same schema.  There is no such explicit requirement in 

native XML databases.  While some products can require that all documents in a 

collection conform to the same schema (by performing validation against a DTD, XML 

Schema, etc.), many products will allow the store of any well-formed XML document in 

a collection.  This schema-independent nature of a collection can be quite powerful by 

facilitating queries across a collection of diverse documents. 

Native XML databases were first queried using XPath 1.0 [XPATH1.0], a 

sublanguage of XSLT 1.0 [XSLT1.0].  However, these technologies were not designed 

with database querying in mind; rather they were intended as a language for transforming 

an XML document.  Users of the native XML databases were addressing a very different 



58

scenario of wanting to extract information from the large collections of documents, and 

this, in part, led to the development of a new XML query language called XQuery 1.0 

[XQUERY].  We will discuss these two “competing” technologies, especially as they 

relate to transforming, in Chapter VII. 

Native XML databases are especially fitting for the OMSI content because they 

support both data- and document-centric objects equally well.  Bourret lists over 35 

native XML database products, including dbXML (dbXML Group), eXist (Wolfgang 

Meier), eXtc (M/Gateway Developments Ltd.), eXtensible Information Server (XIS) 

(eXcelon Corp.), GoXML DB (XML Global), Ipedo (Ipedo), Neocore XML Management 

System (NeoCore), ozone (ozone-db.org), SQL/XML-IMDB (QuiLogic), Tamino 

(Software AG), TOTAL XML (Cincom), X-Hive/DB (X-Hive Corporation), and Xindice 

(Apache Software Foundation).   

B. XML DATABASE PRODUCTS 

Ron Bourret maintains an extensive listing of XML database products, which he 

classifies into eight categories (Table 6). 



59

Table 6.  Classifications of XML Database Products 

 Description Application 

Middleware Software you call from your 
application to transfer data between 
XML documents and databases. 

data-centric 

XML-Enabled Databases Databases with extensions for 
transferring data between XML 
documents and themselves. 

data-centric 

Native XML Databases Databases that store XML in "native" 
form, generally as some variant of the 
DOM mapped to an underlying data 
store. This includes the category 
formerly known as persistent DOM 
(PDOM) implementations. 

data- and document-centric 

XML Servers XML-aware J2EE servers, Web 
application servers, integration 
engines, and custom servers. Some of 
these are used to build distributed 
applications while others are used 
simply to publish XML documents to 
the Web. Includes the category 
formerly known as XML application 
servers. 

data- and document-centric 

Wrappers Software that treats XML documents 
as a source of relational data. These 
products typically query XML 
documents using SQL. 

data-centric 

Content Management 
Systems 

Applications built on top of native 
XML databases and/or the file system 
for content/document management. 
Include features such as check-
in/check-out, versioning, and editors. 

document-centric 

XML Query Engines Standalone engines that can query 
XML documents. 

data- and document-centric 

XML Data Binding Products that can bind XML 
documents to objects. Some of these 
can also store/retrieve objects from the 
database. 

data-centric 

 
SOURCE: From “XML Database Products” (Bourret 2004) 

These classifications cover an overwhelming number of individual products; Bourret lists 

almost 200 of them.  It is patently clear that XML-based OMSI information can be stored 



60

and accessed in many different manners.  For the purposes of this thesis we have chosen 

to sidestep this important aspect of developing an XML framework for OMSI  for two 

principle reasons:   

(1) The manner in which OMSI information might be consumed (apart from 

within the CAFM) is uncertain.  Undoubtedly this is because there are no current users 

communicating their needs to consume OMSI in non-traditional ways.  In this sense, it is 

our belief that this thesis will be quite useful in demonstrating the value of OMSI 

deliverables in the context of new modes of consumption.   

(2) The evaluation of such a large number of products is beyond the scope of the 

thesis. 

C. DATA-CENTRIC  STORAGE 

The bulk of the data generated for OMSI is inherently data-centric.  Indeed, it was 

the data centricity and a desire to incorporate it into a CAFM that provided the impetus 

for this thesis.  Given the XML Schema used to represent this data, it is feasible to create 

a single XML document for each OMSI deliverable (typically a building or small group 

of buildings).  As the final deliverable is imported into the CAFM, there is no long-term 

concern of creating an unmanageable list of documents because a single XML document 

could be generated from Archibus.  In the event that the OMSI deliverable contains 

information not represented in Archibus, it is still possible to parse all the XML 

documents and combine them into a single XML document. 

D. DOCUMENT-CENTRIC STORAGE 

Although only a small part of the total OMSI data is document-centric, there are 

nonetheless noteworthy requirements for generating documents.  The twelve document 

types listed in Chapter IV have historically been created in Microsoft Word, although 

very little presentation markup has been used.  This makes for a very static mode of 

consumption. 

These documents could easily be stored in a Document Management System 

(DMS).  In the preliminary discussions between LANTDIV and NAS Sigonella on how 

OMSI information would best be delivered electronically, it was requested that the OMSI 



61

A/E integrate the Word documents into the Microsoft Sharepoint Portal Server (SPS) 

maintained by the Public Works Department.  Of course, hyperlinks to the documents 

stored in SPS would need to be inserted into Archibus for the CAFM users, but it was 

envisioned other end-users appreciating the ability to query the documents in a more 

robust environment. 

Preliminary investigations into the XML database products soon revealed the 

benefits of storing the 12 OMSI document types using an XML model.  Apart from being 

able to query the document content in the XML framework used for the rest of OMSI, it 

would be quite useful to be able to dynamically repurpose the content for other 

consumers.  Another important improvement of the XML model is the addition of 

semantics to the information content.  As an example, consider the previous deliveries of 

PDF documents that might have included safety admonitions.  While it is possible to 

index a PDF document on SPS, it is quite difficult to modify the document for different 

uses.  It is also challenging to add semantic markup to the PDF text to indicate the 

existence of safety admonitions.  Imagine an HVAC technician wanting to take building 

air distribution and electrical schematics into the field.  He’d have to print the schematics 

and the safety admonitions and hope he brought the ones he’d need.  He could even 

overlook a critical safety admonition.  If the schematics and safety admonitions were 

stored in an XML framework, the content could be easily repurposed for a mobile device 

(e.g. PocketPC) on the server-side and the technician could consume just the ones he 

wanted while in the field. 

The requirement to store the documents in an XML framework led to an 

important realization:  there already existed an XML schema for describing the content of 

technical documents.  This discovery of DocBook would be extremely useful for OMSI. 

1. DocBook Background 

DocBook is a standard set of XML markup tags that are used to describe the 

content of books, articles, and other technical documents.  The DocBook schema was 

first published in 1991 as a joint project between HaL Computer Systems and O’Reilly to 

facilitate the exchange of UNIX documentation originally marked up in troff.  In 1994 

DocBook maintenance was taken over by the Davenport Group.  A Technical Committee 

(TC) of the Organization for the Advancement of Structured Information Standards 



62

(OASIS) was formed in 1998 to further develop and maintain the DocBook DTD.  In its 

present form, DocBook v4.3, there is not an official XML Schema, although the DTD has 

been used to derive Schemas for general use.  The TC intends to publish an official XML 

Schema with V5.0. 

DocBook can be used as a foundation for a publishing system.  It is especially 

well-suited in cases where there are large quantities of content which is  highly 

structured, and which is to be interchanged between incompatible systems, or rendered in 

multiple output forms and versions  (Strayton 2003).  A DocBook is an article, a book, or 

a set (of books).  Books may contain BookInfo (title, author, copyright, etc.), prefaces, 

chapters, and appendixes, bibliographies, glossaries, indices, and a colophon. An article 

contains just a body (similar to a book chapter), appendices, bibliographies, indices, and 

glossaries.  

DocBook has been used in a wide range of applications, including electronic 

books and articles, books for print (especially by O’Reilly), website maintenance, 

computer documentation, training material, Questions and Answer FAQs, etc.  These 

broad applications have generated a need for a “simple” DocBook with a reduced number 

of elements to keep new users from being overwhelmed; Simplified DocBook is currently 

a Working Draft 1.1b3 that contains just 106 elements, 525 entities, and 26 notations.  

DocBook v4.3 contains over 400 elements alone!  A Simplified DocBook must be a 

subset of DocBook, is limited to articles only (single documents such as white papers, 

etc.), and must support online browser transformations (meaning that is must be small 

enough to download transparently to the user).  Unfortunately, Simplified DocBook may 

not contain all the elements needed for OMSI documentation. 

The DocBook schema is well-suited for OMSI documents; the elements shown in 

Table 7 are of particular use. 



63

Table 7.  DocBook Elements Appropriate for OMSI 

 Element Description 

CalloutList A list of annotations or descriptions 

GlossList A list of glossary terms and their definitions 

ItemizedList An unordered (bulleted) list 

OrderedList A numbered list 

Lists 

SimpleList An unadorned list of items 

Caution 

Important 

Note 

Tip 

Admonitions 

Warning 

Meanings are not specified by DocBook.  OMSI can apply the 
standard definitions (WARNING:  Misuse or failure to follow 
instructions properly may result in personal injury or death!; 
CAUTION:  No risk of personal injury; however, misuse or failure 
to follow instructions may result in damage of equipment; and 
NOTE: No risk of personal injury or equipment damage; however, 
misuse or failure to follow instructions may prevent proper 
performance of the equipment) 

Procedure A list of steps to be performed in a well-defined sequence 
Miscellaneous 

ULink A link that addresses its target by means of a URL 
 
SOURCE:  Descriptions from “DocBook: The Definitive Guide” (Walsh and Muellner 2003) 

The admonitions are an excellent illustration of how semantics can be embedded 

into the OMSI documents.  For example, consider the case of a supervisor wanting to 

ensure technicians consider safety requirements prior to beginning work in the field.  The 

DocBook can be queried for admonitions and a safety checklist could be automatically 

generated in HTML. 

2. Creating DocBooks 

Although DocBooks are text documents that can be created or edited using any 

text editor, an integrated development environment (IDE) is essential for authoring 

DocBooks efficiently.  I have examined two IDEs for creating DocBooks:  Altova’s 

AuthenticTM  [AUTHENTIC] and Pixware’s XMLmind XML Editor [XXE].  Both 

applications provide WYSIWYG renditions of the DocBook within the editing process 

and include integrated spell-checkers.  



Authentic comes with a stylesheet for creating DocBooks v4.2.  Figure 13 shows 

a screenshot of Authentic being used to author a DocBook.  Elements can be added using 

the in-document “add…” hyperlinks or by dragging an element from the list of valid 

elements depending on the insertion context.  These methods save the author significant 

time and frustration by avoiding the need to manage start/end tags and ensure the XML is 

a valid DocBook.  Authentic is free as a desktop application or a web browser plug in for 

Internet Explorer. 

Figure 13.  Using Authentic for Authoring a DocBook 

 

XXE is available in Standard and Professional versions.  While the standard 

version is free, it does not have the complete feature set found in the professional version.  

Most notably missing from the standard version is the ability to use FO processor plug-

ins (which would allow rendering of HTML, PDF, or Word output from within XXE) and 

to modify or upload files stored on a FTP or WebDAV server.  Figure 14 shows a 

screenshot of XXE being used to author a DocBook.  Notice that there are simultaneous 

64



tree and style views of the DocBook.  Similar to Authentic, XXE presents a list of valid 

elements depending on context to ensure the validity of the DocBook. 

Figure 14.  Using XXE for Authoring a DocBook 

 

There are many other IDEs that can be used to create DocBooks.  Most are 

incorporated with an XML editor (in the same fashion as XXE) although some are 

dedicated DocBook applications.  One that might warrant further investigation is DMSi’s 

SyntoniXTM [SYNTONIX], which capitalizes on Microsoft Office’s “Smart Documents” 

feature that guides the user through the process of creating a document.  SyntoniX has the 

advantage of letting the author use Microsoft Word to create a Simplified DocBook1.  

This significantly decreases the learning time necessary for creating a DocBook and 

allows the use of a familiar environment for authoring.    

                                                 
 

1 SYNTONIX does not have a DocBook template, perhaps because of the complexity required to 
support all DocBook elements.  However, DMSi does create custom solutions for non-industry standards, 
which might present an opportunity for creating an OMSI-specific subset of DocBook elements. 

65



66

3. Rendering DocBooks with Styling 

DocBooks are not meant for direct consumption by the end-user (i.e. reader).  

They must be styled as part of the publishing system – styled in the sense that 

transforming and formatting must be done in a manner that creates an object viewable or 

printable by the reader.  The W3C has authored the Extensible Stylesheet Language 

family (XSL) of recommendations, which consists of three parts:   

• XSL Transformations  (XSLT) - a language for transforming XML;  

• the XML Path Language (XPath) - an expression language used by XSLT to 
access or refer to parts of an XML document. (XPath is also used by the XML 
Linking specification); and 

• XSL Formatting Objects (XSL-FO) - an XML vocabulary for specifying 
formatting semantics 

XSL-FO are XML documents that includes output information.  They serve as the 

pillars of a DocBook publishing system by incorporating styling information that is 

needed for paginated rendering.  The XSL-FO drive a Formatting Objects processor 

which is responsible for creating the final (consumable) object, which can be a PDF, 

PCL, PS, SVG, XML, Print, AWT, MIF or TXT document.  PDFs are often the primary 

output because PDF readers are ubiquitous and cross-platform.  (Holman 2003) 

Two well-known Formatting Objects processors are Apache’s FOP (Formatting 

Objects Processor) [FOP] and the XEP Rendering Engine [XEP].  FOP, licensed under 

the Apache Software License, is freely available whereas XEP must be purchased. 

We have examined two applications for transforming DocBooks into PDF 

documents:  XXE (as discussed above) and the DocBook Toolchain Manager (DocMan) 

[DOCMAN].  DocMan is a free Java program that transforms DocBooks into HTML, 

XHTML, PDF and CHM documents.  It has a simple interface that also allows batch 

processing of files.  Both applications represent an effective and efficient method of 

producing PDFs for OMSI deliverables. 

Figure 15 shows a sample DocBook fragment and its equivalent automatically 

rendered presentation.  The Table of Contents is automatically generated by parsing the 

entire DocBook for section tags.  Notice that the sections are not explicitly numbered; the 

rendering process can assign numbers (using whatever convention desired) as the 

DocBook is parsed.  Another useful feature of rendering DocBook presentations is the 



insertion of standard admonition (e.g. Warning) graphics.  Other features, such as 

automatic numbering of procedure elements, are also useful. 

Figure 15.  DocBook Fragment and Automatically Rendered Presentation 

 <part> 
  <title>HVAC</title> 
  <chapter> 
   <title></title> 
   <sect1> 
    <title>Safety Instructions</title> 
    <para>When servicing electrical equipment, follow lockout/tagout procedures 
before performing any maintenance.  Be sure that the control circuitry has been 
completely disabled to prevent unexpected start up of the equipment.</para> 
    <para>Servicing the HVAC system involves dealing with components that operate 
on electrical power.   Components of the system may be idle and start without warning.    
Before performing any maintenance or repairs on equipment, the warnings noted before the 
applicable procedure must be adhered to.   The electrical disconnect must be open, locked 
and tagged while working on the unit.</para> 
    <warning> 
     <title>Rotating Parts</title> 
     <para>Many components of the HVAC system have rotating parts, such as fans 
and compressors.   Components of the system may be idle and start without warning.   In 
order to avoid physical injury, the electrical disconnect of equipment being worked on 
must be open, locked and tagged.</para> 
    </warning> 

 
Note:  The Table of Contents is automatically generated based on the <sect> tags.  Admonition (e.g. 
Warning) graphics are also automatically inserted. 

4. Sample OMSI DocBook 

We have developed a sample DocBook for OMSI.  Appendix C contains both the 

sample DocBook and its transformation into a PDF file.  The sample and transformation 

have resolved any doubt about the benefit of creating OMSI DocBooks; one can easily 

create the original information in DocBook, deliver the desired transformation (e.g. a 

67



68

PDF document), and deliver the DocBook for future use.  Even if the modes of 

consumption never change (an unlikely prospect), there is very little extra effort involved.  

Perhaps the only downside is the requirement to learn a new authoring environment 

(everyone is familiar with Microsoft Word, but few have seen XXE), but we believe this 

to be a worthy investment for protection against future changes. 

 

This chapter has examined methods of storing data- and document-centric XML-

based OMSI information.  While addressing document-centric storage, we discussed the 

rendering of DocBooks for end-user consumption as PDF or HTML documents.  In the 

next chapter, we address the more general topic of XML transformations which are 

essential to the development and implementation of integrated OMSIML deliverables.  

 



69

VII:   XML-BASED OMSI INFORMATION TRANSFORMATIONS 

A. TRANSFORMATION TECHNOLOGIES 

It is beyond the scope of this thesis to provide an in-depth analysis of XML 

transformation technologies.  Nonetheless it was important to choose a technology that 

meets the needs of the OMSI process and is sustainable well into the future.  This chapter 

briefly describes the two leading technologies, XSL Transformations and XQuery, and 

discusses which is better suited for use with OMSI. 

1. XSL Transformations (XSLT) 

The W3C’s latest XSL Transformations recommendation [XSLT1.0] was 

designed for use as part of XSL.  The authors explicitly note:  

XSLT is also designed to be used independently of XSL. However, XSLT 
is not intended as a completely general-purpose XML transformation 
language. Rather it is designed primarily for the kinds of transformations 
that are needed when XSLT is used as part of XSL. 

Given such a strongly worded design intention, it would seem strange that over 80% of 

actual XSLT usage is for transforming XML to HTML and only 20% is used for 

rendering XML into other display formats which include XSL (Chamberlin, Draper et al. 

2003).  This indicates that XSLT has indeed become a general-purpose XML 

transformation language.   

Many of the characteristics of XSLT as a transformation language have led to its 

widespread use.  An XSLT stylesheet is itself an XML document, which gives it the 

ability to modify other XSLT stylesheet.  This can be quite useful in large applications 

where general stylesheets are modified for specific use.  XSLT is a functional 

programming language, which is quite different from the more common procedural 

languages such as Java, C, and VisualBasic.  Functional languages emphasize rules and 

pattern-matching instead of the procedural construct of specifying a sequence of steps 

(albeit with condition branching) in order to achieve the desired result.  XSLT cannot 

specify an explicit order of execution nor can it use updateable variables.  These 

characteristics can make it daunting for traditional programmers to master the language, 



70

but once the functional paradigm is embraced, XSLT programmers can become quite 

efficient. 

XSLT includes the use of a sub-language for selecting nodes from the source tree.  

This sub-language, XML Path Language (XPath) [XPATH1.0] was published by W3C as 

a separate recommendation because its use clearly extends beyond XSLT.  It was 

intended to be a single language for addressing XML documents and was specifically 

designed for use with XSLT and XPointer. 

XSLT 2.0 [XSLT2.0] and XPath 2.0 [XPATH2.0] are currently in working draft 

status and continue to be complementary products.  Some long-awaited functionality is 

included in the new versions, most notably conversion of result tree fragments to node-

sets, multiple output documents, and built-in support for distinct-value grouping.  While 

the functions have always been available through extensions (e.g. EXSLT), it will soon 

be possible to ensure all XSLT compliant processors support these functions.  

[XPATH2.0] also includes support for data types beyond [XPATH1.0]’s string, Boolean, 

node-set, and number. 

We use only [XSLT1.0] for XSLT transformations since there is no missing 

functionality and the transforms should work long into the future given the excellent 

backward compatibility of [XSLT2.0]. 

2. XQuery 

“XQuery 1.0:  An XML Query Language” [XQUERY] is a W3C Working Draft 

for a specification designed to be broadly applicable across many types of XML data 

sources.  It is obviously intended as a different language from [XSLT2.0] and differs in 

many significant ways.  These differences can be explained by two principle reasons:  the 

different design requirements led to different design decisions and the authors of each 

specification came from very different communities.  It is important to recognize these 

differences and understand the context in which XQuery was developed. 

The heart of XQuery is the FLWOR expression.  FLWOR is an acronym 

comprised of the first letter of each clause that may occur together:  For, Let, Where, 

Order, and Return.  FLWOR expressions are almost self-explanatory; the following 

example certainly needs no explanation: 



71

for $b in doc("books.xml")//book 
let $a := $b//author 
where count($a) > 1 
order by $b/title 
return $b/title 

Notice that the FLWOR statement is quite similar to SQL’s “SELECT columnlist FROM 

tablename WHERE criteria ORDER BY columnlist” statement.  Such similarity makes 

XQuery compact and especially appropriate for use with data-centric information. 

3. Comparison of XSLT and XQuery 

When comparing XSLT and XQuery, the answer to the question “which is 

better?” is not straightforward.  As much as the debate between XML and RDBs is 

similar to a diametric discussion of religion, so too does the debate between XSLT and 

XQuery tend to polarize the two sides.  Here are two differing opinions on the answer to 

the question: 

“The strength of XQuery is that it is a simpler language than XSLT, which 
makes it much more feasible to implement efficient searching of very 
large XML databases.  Its other strength is that for simple problems, the 
XQuery code is much shorter than the XSLT code.” (Kay 2004a) 

“My take on it is that in order to do anything of interest, you need to know 
XPath to a fairly solid degree. By the time you get there, XSLT is more 
expressive and capable than XQuery.” (Kurt 2004) 

Neither author is likely to convince the other that he is mistaken.  Nonetheless, there are 

strengths and weaknesses of the two technologies that are indisputable.  In an interview 

with Ivan Pedruzzi (developer of Sonic’s Stylus Studio [STYLUSSTUDIO]), Michael 

Kay, the developer of Saxon [SAXON] lays out a clean distinction between the two 

technologies (Kay 2004b).  He makes the observation that most of the XQuery 

proponents come from an RDB environment, whereas for RDB developers XSLT isn’t a 

language they can easily relate to.  Instead, XQuery offers them SQL-like semantics that 

can be easily understood and visualized.  On the other hand, XSLT developers are very 

familiar with their language – to the point they’ve learned to appreciate its strengths and 

ignore its weaknesses.  It’s also true that almost anything done with XQuery can still be 

done with XSLT, with the exception of querying relational or XML databases. 



72

There is certainly a middle ground where either XSLT or XQuery is appropriate, 

even if one is the more efficient technology.  The case of managing and repurposing 

OMSI falls into this category.  I have developed both XSLT and XQuery transformations 

to generate the same HTML output.  As will be discussed later, there are some notable 

performance differences, although we did not investigate the source of the bottlenecks to 

determine if optimizations could be made to improve performance. 

Both technologies can be used in a wide array of command-line or IDE 

processors.  Even though XQuery has not reached recommendation status it has been 

implemented in commercial products such as Stylus Studio and the open-source Saxon. 

Given the similar functionality of these two transformation technologies, I found 

them both to be suitable for use in developing OMSIML.  However, there is currently one 

difference between them that makes a very strong case for using XSLT in any delivered 

OMSI content:  integrated web browser support. 

B. INTEGRATED WEB BROWSER SUPPORT 

Web browsers offer varying levels of integrated XSL functionality.  Internet 

Explorer 6, Netscape 6, Mozilla and Firebird all provide built-in [XSLT1.0] processing.  

Internet Explorer Version 5 doesn’t actually support XSLT, but rather a precursor to 

XSLT known as XSL-WD.  Table 8 lists XSLT support by the major web browsers.  

Over 99% of the global web browsers support [XSLT1.0]. 



73

Table 8.  XSLT Support in Web Browsers 

Browser XSLT version XSLT processor 

Internet Explorer 6.0 XSLT 1.0 or XSL-WD MSXML 3.0 

Internet Explorer 5.5 XSL-WD MSXML 2.0 

Internet Explorer 5 XSL-WD MSXML 2.0 

Internet Explorer 5 for 
Mac 

XSL-WD MSXML 2.0 

Netscape 6+ XSLT 1.0 TransforMiiX 

Mozilla/Firebird XSLT 1.0 TransforMiiX 

Opera No support - 
 
SOURCE:  From “Practical XML for the Web” (Shiell, James et al. 2002) 

Integrated browser support is important because it allows for client-side XSLT 

transformations of XML documents.  A diagram of client-side transformation process is 

shown in Figure 16.  A processing-instruction is added to the XML document that 

instructs the browser to perform a transformation by giving reference to the XSLT 

document.  When opening the XML document, the browser performs the transformation 

and renders the result. 



Figure 16.  Client-side XML Transformations 

 

Client-side transformations offer the benefit over server-side transformations of 

offloading the processing from the server to the client.  This saves bandwidth and reduces 

server processing requirements.  This is especially appealing when stylesheets are cached 

locally and only the XML data needs to be transmitted.  As the number of concurrent 

clients increases, this methodology scales better than server-side transformations. 

More importantly, client-side transformations allow the server to send 

semantically rich data which is then transformed as late as possible.  The final 

transformation is used only to perform the rendering of the presentation.  This preserves 

the original data for other potential uses:  follow-on queries, later presentations, etc.  If 

transformations occur too soon, at best the consumer can be forced to perform screen-

scraping to capture the original data.  Performing the transformation client-side also 

allows the user to pass parameters to the XSLT just prior to executing the transformation.  

While this is not a design issue for the OMSI framework, it leads to another very 

important benefit of client-side transformations:  user customizations. 

Using client-side transformations, users are free to choose their own aesthetic 

customizations (i.e. styles or skins) or even render the data in completely new ways such 

as charts, summaries, or even speech.  This has very important implications when 

considering the varied uses of OMSI deliverables.  For example, LANTDIV reviews the 
74



75

deliverables for content (i.e. is all the information present?), NAS Sigonella technicians 

review the deliverables for accuracy (i.e. is the information present accurate?), and the 

NAS Sigonella planners review the deliverables for summary purpose (i.e. what does the 

information imply vis-à-vis workload?).  Without client-side transformations, a complex 

server-side framework must be developed (which is beyond the scope of this thesis) or 

the OMSI A/E must create separate XML documents for each of the OMSI users.  The 

prospect of maintaining separate documents implies an exceptional burden.  With client-

side transformations it is a simple matter to develop different XSLTs for different uses. 

Given these benefits of client-side XSLT transformations, we have developed 

XSLT transformations specific to the consumer of the information.  The Design-Based 

Planning Submittal described in the next chapter offers an excellent example of this 

methodology. 



76

THIS PAGE INTENTIONALLY LEFT BLANK 
 



VIII:   DEVELOPMENT AND IMPLEMENTATION 
We chose to use an iterative “Proof-of-Concept → Pilot → Production” (P3) 

methodology for developing the OMSI/ML product line as described in Figure 17.  

Rather than assume a traditional methodology such as the Waterfall, Spiral, Evolutionary, 

or Extreme models, we focused on what the delivery could do for the end-user.  The P3 

approach is most similar to the Prototyping model (Lantz 1985), albeit on a much smaller 

scale, and shares some of its same concerns.  The biggest criticism is the tendency to 

over-promise and under-deliver.  This happens because the end-user can get the sense 

that the product is finished, when in fact it is has only established the framework of the 

system.  It should be clearly stated here that the results of this thesis are not 100% of the 

solution.  Rather, they demonstrate the existence of a superior framework for managing 

the OMSI information lifecycle.  

Figure 17.  Development Methodology 

 
 

The P3 methodology helps ensure client and stakeholder buy-in by using 

manageable steps.  The Proof-of-Concept stage gives users an opportunity to visualize 

what the product will do for them.  The Pilot stage is where much of the functionality 

gets added.  It is especially useful for receiving lots of feedback to help refine the 

77



78

product.  Most of the buy-in occurs in this stage.  In the Production stage additional 

feedback is received and final buy-in is obtained. 

As part of the Proof-of-Concept, methods were first developed to transform 

ArchibusML to OMSIML.  Then a Proof-of-Concept and Pilot HTML output of OMSI 

information were developed that represented a “Design-Based Planning Submittal”.  

Finally, a Proof-of-Concept, Pilot, and Production PM Library were developed that can 

be used for managing a library of PM procedures. 

A. ARCHIBUS TO OMSIML TRANSFORMATION 

In order to develop a working example of an OMSIML document, we must first 

be able to transform freely between Archibus and OMSIML.  Such a capability is 

necessary before considering other opportunities where baseline development data is 

required from which to work.  We first accessed the Archibus database using Microsoft 

Access and ODBC.  This had the significant advantage of easily creating SQL queries 

that, once exported as XML (using Access’s built-in Export as XML functionality), 

would be much easier to transform with XSLT.  It was also an easy endeavor to link 

Archibus with the developmental database schema (as shown in Figure 11 on page 33) 

which had already been mostly implemented in the production schema of Archibus.  Of 

course, maintaining a “shadow” Access database is not feasible in the long-term and the 

Archibus data must eventually be accessed through its ArchibusML export API to ensure 

compatibility with future Archibus changes.. 

After establish database connectivity, we created an Access query containing all 

the keys in the AFM_eq table as well as all the keys of any table containing the AFM_eq 

table’s primary key (eq_id).  This to ensure that any additional data exports could tie into 

the EquipmentListing without needing to make any changes to the EquipmentListing 

itself.  Using the IDEF1x model, partially shown below, it was an easy matter to 

accomplish this. 



 
All identifier dependency parent entities (shown by rounded corners) connected to the eq 

entity already had their primary keys contained in the eq relation.  It was then only 

needed to add the primary keys of those entities connected to the eq relation through non-

identifying relations (shown as dashed lines) because in these cases, the primary keys of 

the parent entity weren’t contained in the child entity. 

The importance of ensuring the presence of all these keys in the EquipmentListing 

is best shown by example.  In the event that pmp_id was not included in 

EquipmentListing, it would not be possible to later export AFM_pmpstr and relate it to 

the EquipmentListing because the pms relation could not be navigated.  This would 

require creation of an export including the pms relation which would then have to ensure 

that its eq_id attributes were synchronized with those in EquipmentListing.  While such a 

process is certainly feasible, it creates an opportunity for data mismatch and needlessly 

complicates the synchronization process.   

The schema of Access’ Equipment Listing query exported as XML 

(EquipmentListing.xml) is shown in Figure 18.   

79



Figure 18.  XML Schema of Access’ Equipment Listing Exported as XML 

 

Having generated a schema instance document EquipmentListing.xml, the following 

straightforward XQuery transforms it to an XML document conforming to the OMSIML 

schema: 

 

80



81

<OMSI> 
 <Buildings> 
  { 
   for $bl in distinct-values(/dataroot/AFM_EquipmentListing/bl_id) 
   order by $bl 
   return 
   <Building> 
    <bl_id>{$bl/text()}</bl_id> 
     { distinct-values ( 
     for $blsys in /dataroot/AFM_EquipmentListing/bl_sys_level_id 
     where $blsys/../bl_id = $bl 
     order by $blsys     
     return 
     <BlSys> 
      <BlSysLevelId>{$blsys/text()}</BlSysLevelId> 
      <EqListing> 
       { distinct-values ( 
       for $EqItem in /dataroot/AFM_EquipmentListing 
       where $EqItem/bl_sys_level_id = $blsys and $EqItem/bl_id = 
$bl 
       return 
       <EqItem> 
        <EqId>{$EqItem/eq_id/text()}</EqId> 
        <Description> </Description> 
        <EqTypeId>{$EqItem/eq_type_id/text()}</EqTypeId> 
         <PMReqs> 
         { distinct-values( 
         for $PMItem in /dataroot/AFM_EquipmentListing 
         where $PMItem/eq_id = $EqItem/eq_id 
         return  
         <PMId>{$PMItem/pmp_id/text()}</PMId> 
         ) 
         } 
         </PMReqs> 
       </EqItem> 
       ) 
       } 
      </EqListing> 
     </BlSys> 
     ) 
     } 
   </Building> 
  } 
 </Buildings> 
</OMSI> 

 
Using a similar process enables the transform of any Archibus data into an 

OMSIML instance.  Our next development was to create a pilot application that built 

upon OMSIML. 



B. THE DESIGN-BASED PLANNING SUBMITTAL 

The first development taken to the pilot stage was a design-based planning 

submittal (DBPS).  The NAS Sigonella PWD requested this submittal for use in planning 

the maintenance requirements for new facilities not yet delivered.  They needed a way to 

estimate the man-hours required by Trade to maintain a new Building System. This type 

of submittal was an excellent showcase for the merits of OMSIML.  It would allow for a 

delivery that was previously unfeasible because the OMSI A/E would not generate 

anything but the pre-established deliveries – any additional deliverables would require a 

modification to the contract.  

NAS Sigonella requested an HTML delivery shown by their prototype in Figure 

19. 

Figure 19.  Design-Based Planning Submittal Request by NAS Sigonella 

 
 

In developing this delivery, it was decided to transform OMSIML into an 

intermediate markup language that could then be transformed into a final consumable 

format.  The benefit of creating this intermediary is the ability to separate its presentation 

82



from its content; the intermediate XML is not intended for end-user consumption.  A 

final transformation will be necessary to generate the HTML requested by NAS 

Sigonella.  We could have easily applied a single transformation that created the final 

HTML from OMSIML, but it would have made it more cumbersome to adjust the 

deliverable if new modes of consumption were requested.  As an example, suppose NAS 

Sigonella determined they needed the DBPS information in an Excel spreadsheet.  With 

the intermediate XML, it is a simple matter to repurpose it as comma-separated-values 

(CSV) that could be directly imported into Excel.  Given the simple structure of the 

intermediate XML, anyone with even a rudimentary understanding of XSLT could create 

this new transformation.  The XML Schema diagram of the intermediate XML, is shown 

in Figure 20. 

Figure 20.  DBPS XML Schema Diagram 

 

To generate the intermediate markup from OMSIML the performance of both XSLT and 

XQuery were compared.  XQuery was the first choice because it seemed a much simpler 

endeavor given the straightforward nature of the FLWOR construct.  Unfortunately, its 

performance was unacceptable; it took over 300 seconds to run against the prototype 

OMSIML.  The final production OMSIML, likely ten to twenty times the size of the 

prototype, would push the run times to an unacceptable level.  The  equivalent XSLT 

performance was found to be quite acceptable.  The comparison of the two 

transformations are summarized in Table 9.  The complete listings of the two 

transformations are contained in Appendix D. 

83



84

Table 9.  DBPS XSLT and XQuery Performance 

Profile Type: XSLT  
Transform Engine: Stylus 
Transformer Script: OMSI2DBPS.xsl 
Initial Document: OMSI23.xml 
Total Elapsed Time: 22268259µs (µs=microseconds, or 1/1000000 second) 
Note:  99.9% of the elapsed time occurred processing the innermost FLWR statement 

 

Profile Type: XQuery Transform 
Transform Engine: Stylus 
Transformer Script: DBPS23.xquery 
Initial Document: OMSI23.xml 
Total Elapsed Time: 360387709µs (µs=microseconds, or 1/1000000 second) 
Note:  92.4% of the elapsed time occurred processing the <xsl:if 

test="/OMSI/PMLibrary/PMItem[@PMID=$PMID]/TradeID = $TradeID">  
 

Once the intermediate markup was generated, creating the final presentation 

XSLT was a straightforward endeavor.  The XSLT listed in Appendix D was applied to 

the intermediate markup and resulted in the HTML shown in Figure 21. 



Figure 21.  Design-Based Planning Submittal Delivery 

 

The intermediate XML (DBPS.xml) and presentation XSLT (DBPS.xsl) are delivered to 

the end-user.   When opening DBPS.xml in Microsoft Internet Explorer 6, the DBPS.xsl 

is automatically applied and the end-user is presented just the output of the XSL. 

C. THE PM LIBRARY 

As a final development we intended to demonstrate the process all the way 

through the P3 methodology by developing an XML Schema to represent information 

required for a PM Library.  We will refer to the schema and instance documents as 

PMLibrary.xsd and PMLibrary.xml, respectively.  Figure 22 shows a diagram of the 

85



PMLibrary.xsd which is a part of the larger OMSIML Schema documented in Appendix 

B. 

Figure 22.  PMLibrary XML Schema Diagram 

 
 

Comparing the schema diagram to the relational schema of the equivalent 

Archibus data shown in Figure 23 reveals the XML model to be much simpler.   

Figure 23.  Archibus PM Procedure Schema 

 
 

This is possible because the business rules used by NAS Sigonella limit the PM 

Procedure to just one Step.  In the event this business rule were to change, it would be a 

trivial matter to adjust the PMLibrary to account for more than one Step per Procedure 

and more than one Trade per Step.  [N.B. We did not implement such a model because it 

is unlikely that more than one step would ever be added.  Indeed, this is the attraction of 

XML modeling – PMLibrary could easily be extended if the future warrants, which leaves 

the schema designer to concentrate on current processes.] 

86



87

Each <PMItem> element represents a PM procedure.  It is uniquely identified by 

its attribute “PMId” which must be unique among all PMItems.  The child elements 

further describes the details of the PM procedure. 

The <Frequency> element is enumerated and contains the number of maintenance 

actions required in one year.  The following is a list of acceptable enumeration values and 

their verbal equivalents: 
<selectoption description="Daily" value="365"/> 
<selectoption description="Weekly" value="52"/> 
<selectoption description="Monthly" value="12"/> 
<selectoption description="Quarterly" value="4"/> 
<selectoption description="Semi-Annual" value="2"/> 
<selectoption description="Annual" value="1"/> 
<selectoption description="Bi-Annual" value="0.5"/> 
<selectoption description="Every Five Years" value="0.2"/> 
<selectoption description="UNK" value="0"/> 

If an otherwise similar PM procedure has two possible frequencies, it will be necessary to 

create separate PMItems.  While this is not an elegant model for such a scenario, the 

nature of its rare occurrence fails to justify the added complication of modeling the 

possibility of more than one frequency per PMItem. 

Figure 24 shows a diagram of the XML Schema corresponding to an XML 

document generated by using the Archibus Data Transfer Command to export the 

AFM_pmp, AFM_pmps, and AFM_pmpstr tables. 



Figure 24.  Archibus/FM XML Export Schema for PM Library 

88



In order to conduct a proof-of-concept, we executed an Archibus Data Transfer 

export to generate information to feed into the PMLibrary.  The PM procedures were 

taken from a Syska OMSI deliverable made in November 2003 consisting of 

approximately 50 items.  These items, while not a complete list of all PM procedures, 

served as a sufficiently representative sample of the procedures used at NAS Sigonella.  

Finishing the proof-of-concept, we developed an AuthenticTM  view for managing the PM 

Library as shown in Figure 25. 

Figure 25.  Authentic View of PM Library 

 

Note that the user is presented with a pull-down list of the allowable enumerated values 

for Frequency.  This is useful in hiding the abstraction of Frequency as a value for the 

number of times the procedure must be performed each year; the user need only select a 

verbal description of frequency and Authentic inserts the value of the description. 

Having proven that it was feasible from a usability perspective to represent the 

PM Library in an XML document, we proceeded to conduct a pilot implementation that 

89



90

would take the information in PMLibrary.xml and transform it into an XML document 

that conformed to ArchibusML.  This would allow changes, deletions, or insertions to the 

development PMLibrary which would then be reflected automatically in the production 

Archibus database.  The XSLT that accomplishes this transformation is listed in 

Appendix D. 

We also extended the OMSIML to ArchibusML transformations to include all the 

information in a completely populated OMSIML instance document which includes 

UNIFORMAT, Buildings, Building Systems, Equipment Types, Equipment Listings, and 

relevant look-up lists.  This is perhaps the most useful production-ready result of this 

thesis as it will allow OMSI authors to create information in XML as a first step, rather 

than having to use Archibus to author content.  While OMSIML may not include all the 

information needed for an OMSI deliverable, it is easily extendable.   

It is our expectation that the next OMSI delivery order for NAS Sigonella will 

create information using XML documents.  This also includes the use of DocBook for 

creating all document-centric OMSI information.  Indeed, DocBooks should be used 

immediately.  They can be created using free editors that ensure conformance to the 

DocBook schema or they can be authored with any text or XML editor.  Some of the free 

editors use a GUI that is almost as easy to use as Microsoft Word.  The benefit of freely 

capturing semantics of the text could prove invaluable to future applications. 

 
  

 



91

IX:   CONCLUSIONS AND IMPLICATIONS 

A. CONCLUSIONS 

This thesis began with consideration of an information integration problem.  After 

data has been created or collected it must be managed by an information system, many 

systems are often stove-piped and unable to share their information representations with 

other systems.  Information is satisfactorily integrated when information systems can 

cross-communicate and share their data that has been given semantics or context.  Such 

integration allows both structured and semi-structured data to be collected once and 

repurposed as new information across any number of systems. 

We approached the research of improving the OMSI creation, management, and 

repurposing processes by first performing a ground-up review of modeling OMSI 

content.  Information integration considered a priori (as opposed to post facto integration) 

allowed us to redesign OMSI models in a manner that maximizes our ability to repurpose 

data without manual intervention or re-authoring.  Rather than accept the traditional 

model of OMSI content as strictly document-based, we chose to examine relational and 

XML models of the information.  A requirement of any useful OMSI model is the ability 

to integrate with a CAFM.  This thesis addressed a specific CAFM (Archibus) and began 

the modeling of OMSI as a relational model.  We used the IDEF1X information 

modeling technique to diagram the relational model and then used the diagram and some 

general modeling recipes to create an XML schema for OMSI which.  We called this 

schema OMSIML and used it to develop proof-of-concepts, pilots, and a production-

ready implementation of a PM Library.  We also described the DocBook schema and 

justified its use for creating the purely document-centric OMSI information. 

Methods of storing and transforming XML-based OMSI information were also 

examined.  The benefit of OMSIML is in its ability to store and transform XML instances 

to support both current deliverables and future, yet to be identified, requirements.  We 

have not identified a system for storing and querying the OMSI XML documents; the 

current processes are quite manageable using the XML documents accessed directly by 

an Operating System’s file management services.  We compared the suitability of XSLT 



92

and XQuery as XML transformation technologies and developed transformations for the 

proof-of-concept, pilot, and production implementations. 

The production-ready implementation of the PM Library includes the use of 

Altova’s Authentic to manage the information in an intuitive and efficient graphical 

environment.  This free application allows the management of XML documents in a 

manner that is comparable to traditional database interfaces using queries and forms. 

The most useful result of this thesis is the OMSIML to ArchibusML 

transformations and the use of DocBook for creating document-centric OMSI 

information.  These two implementations will allow OMSI authors to create information 

in XML documents as a first step, thereby capturing semantics of the data for use in 

current and future applications.  DocBook is extremely attractive because it is a 

standardized schema that makes use of free transformations to create deliverables in PDF, 

Word, or HTML. 

B. AREAS FOR FURTHER RESEARCH AND DEVELOPMENT 

While this thesis has produced useful deliverables for authoring OMSI 

information in XML documents, there are many areas that warrant further research and 

development.  The four most significant areas are schema conversions, transformation 

efficiency, XQuery implementations, and native XML databases. 

We have described general recipes for modeling XML based on relational 

schemas.  We also briefly addressed the topic of schema conversion and a “Constraints-

based Translation” algorithm for automatically converting a relational schema to an XML 

schema (Lee, Mani et al. 2002).  The prospect of automating the creation of an XML 

schema from a relational schema would greatly facilitate future implementations of 

OMSI without needing to give considerable thought to optimum schema design. 

While XSLT and XQuery can both perform a given XML transformation, we 

found significant differences in efficiency to XQuery’s detriment.  As more XQuery 

processors become available it would be useful to identify bottlenecks in either XQuery 

construction or processor implementations.  Although the SQL-like nature of XQuery 

FLWOR expressions greatly simplifies the development of transformations by non-XSLT 

experts, unacceptable efficiencies must be eliminated.  Nonetheless, XSLT functionality 



93

is included in 99% of all web browsers and will likely continue to remain the best 

technology for creating content presentation-specific transformations.   

We have not addressed implementations of native XML databases.  However, 

these products represent an excellent method for managing OMSIML and DocBook 

instances.  The ability to query collections of OMSI XML documents makes way for 

many repurposing opportunities for consumers of OMSI information.  This may also 

include a publishing framework for OMSI information external to a CAFM system. 

C. IMPLICATIONS 

OMSIML represents a revolutionary step in the progress of OMSI deliverables.  It 

greatly improves the flexibility of LANTDIV’s OMSI program by resulting in a single 

statement of work for OMSI authoring that can support almost any end-user information 

storage system.  It meets the current needs of OMSI customers and allows for easy 

extensibility for addressing future (and as yet unknown) needs.  OMSIML also obviates 

the requirement for OMSI A/Es to learn the intricacies of CAFMs in order to integrate 

their deliverables with the customer’s CAFM.  This will reduce the expense of OMSI 

deliverables and allow for greater competition among OMSI A/Es.  It also makes it more 

feasible to generate OMSI deliverables for non-MILCON construction and repair when 

fiscal resources are scarce or it is not reasonable to expect small construction contractors 

to understand the complete OMSI process.  Any construction contractor can easily create 

an OMSIML document conforming to the XML Schema that can then be delivered using 

the automated tools of LANTDIV’s OMSI process. 

Most importantly, the XML framework of OMSI ensures its suitability far into the 

future by hedging against new CAFMs, modified O&M practices, different planning 

tools, and even new maintenance organizations (e.g. contracting out all maintenance 

efforts.).  OMSIML provides deliverables that will remain relevant, accurate, 

integratable, and customizable long into the future by being able to evolve with changing 

processes.  This ability is essential to the long-term success of any O&M program and 

adds significant value to LANDIV’s OMSI program.  We expect the LANTDIV 

customer base to grow as a result of the more robust deliverable framework and as more 

applications for OMSI are developed the OMSIML schema will continue to be refined.   



94

THIS PAGE INTENTIONALLY LEFT BLANK 
 



APPENDIX A – ARCHIBUS DATA TRANSFER FUNCTIONALITY 

Archibus has a data transfer function that allows users to manually import or 

export selected data as an XML document.  There are also APIs provided that let external 

applications or scripts perform this data transfer automatically.  The XML conforms to 

the following schema: 

 

Each table exported is represented by a <Table> element which is identified by 

the Archibus table name stored in its Name attribute; there can be more than one table 

imported/exported.  The <Header> element sets parameters, specifies which fields to be 

imported/exported, and holds an SQL statement to be executed by Archibus prior to the 

transfer.  The <Data> element holds a child element for each of the records to be 

imported/exported.  The child element is named the same as \ARA\Table\@Name and 

presents each field as an attribute named after that field. 

 

 95



APPENDIX B – OMSI XML SCHEMA 

 

OMSIML Schema 

<?xml version="1
<!-- edited with
--> 
<xs:schema xmlns
 <xs:simpleType
  <xs:restricti
   <xs:minLeng
   <xs:maxLeng
   <xs:pattern
  </xs:restrict
 </xs:simpleTyp
 <xs:simpleType
  <xs:restricti
   <xs:minLeng
   <xs:maxLeng
   <xs:pattern
  </xs:restrict
 </xs:simpleTyp
 <xs:simpleType
  <xs:restricti
   <xs:minLeng
   <xs:maxLeng
   <xs:pattern
  </xs:restrict
 </xs:simpleTyp
 <xs:simpleType
  <xs:restricti
   <xs:minLeng
   <xs:maxLeng
   <xs:pattern
  </xs:restrict
 </xs:simpleTyp
 <xs:element na
  <xs:complexTy
   <xs:sequenc
    <xs:elemen
    <xs:elemen
    <xs:elemen
    <xs:elemen
    <xs:elemen
    <xs:elemen
    <xs:elemen
   </xs:sequen
  </xs:complexT
  <xs:key name=
   <xs:selecto
   <xs:field x
  </xs:key> 
  <xs:key name=
   <xs:selecto
   <xs:field x
  </xs:key> 
  <xs:key name=
   <xs:selecto
   <xs:field x
  </xs:key> 
  <xs:key name=
   <xs:selecto
   <xs:field x
  </xs:key> 

 

(cont.) 
.0" encoding="UTF-8"?> 
 XMLSPY v5 rel. 4 U (http://www.xmlspy.com) by Scott Raymond (private) 

:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"> 
 name="Level1Type"> 
on base="xs:string"> 
th value="1"/> 
th value="1"/> 
 value="[A-Z]"/> 
ion> 
e> 
 name="Level2Type"> 
on base="xs:string"> 
th value="3"/> 
th value="3"/> 
 value="[A-Z][1-9]0"/> 
ion> 
e> 
 name="Level3Type"> 
on base="xs:string"> 
th value="5"/> 
th value="5"/> 
 value="[A-Z][1-9]0[1-9][0]"/> 
ion> 
e> 
 name="Level4Type"> 
on base="xs:string"> 
th value="5"/> 
th value="5"/> 
 value="[A-Z][1-9]0[1-9][1-9]"/> 
ion> 
e> 
me="OMSI"> 
pe> 
e> 
t ref="UNIFORMAT"/> 
t ref="BuildingSystems"/> 
t ref="Buildings"/> 
t ref="EquipmentTypes"/> 
t ref="SystemEquipmentTypes"/> 
t ref="PMLibrary"/> 
t ref="Trades"/> 
ce> 
ype> 
"Level1Code"> 
r xpath="UNIFORMAT/LEVEL1/Level1Code"/> 
path="."/> 

"Level2Code"> 
r xpath="UNIFORMAT/LEVEL1/LEVEL2/Level2Code"/> 
path="."/> 

"Level3Code"> 
r xpath="UNIFORMAT/LEVEL1/LEVEL2/LEVEL3/Level3Code"/> 
path="."/> 

"Level4Code"> 
r xpath="UNIFORMAT/LEVEL1/LEVEL2/LEVEL3/LEVEL4/Level4Code"/> 
path="."/> 

96



 97

OMSIML Schema (cont.) 

  <xs:key name="BUILDING_bl_id"> 
   <xs:selector xpath="Buildings/AFM_bl/bl_id"/> 
   <xs:field xpath="."/> 
  </xs:key> 
  <xs:key name="EQTYPE_EqTypeId"> 
   <xs:selector xpath="EquipmentTypes/EqType/EqTypeId"/> 
   <xs:field xpath="."/> 
  </xs:key> 
  <xs:key name="SYSEQTYPE_PrimaryKeys"> 
   <xs:selector xpath="SystemEquipmentTypes/SysEqType"/> 
   <xs:field xpath="EqTypeId"/> 
   <xs:field xpath="Level4Code"/> 
  </xs:key> 
  <xs:keyref name="SYSEQTYPE_EqTypeId" refer="EQTYPE_EqTypeId"> 
   <xs:selector xpath="SystemEquipmentTypes/SysEqType/EqTypeId"/> 
   <xs:field xpath="."/> 
  </xs:keyref> 
  <xs:keyref name="SYSEQTYPE_Level4Code" refer="Level4Code"> 
   <xs:selector xpath="SystemEquipmentTypes/SysEqTypeId/Level4Code"/> 
   <xs:field xpath="."/> 
  </xs:keyref> 
  <xs:key name="BLSYSLEVEL_BlSysLevelId"> 
   <xs:selector xpath="BuildingSystems/BlSysLevel/BlSysLevelId"/> 
   <xs:field xpath="."/> 
  </xs:key> 
  <xs:keyref name="BLSYSLEVEL_Level2Code" refer="Level2Code"> 
   <xs:selector xpath="BuildingSystems/BlSysLevel/Level2Code"/> 
   <xs:field xpath="."/> 
  </xs:keyref> 
  <xs:keyref name="BLSYSLEVEL_Level3Code" refer="Level3Code"> 
   <xs:selector xpath="BuildingSystems/BlSysLevel/Level3Code"/> 
   <xs:field xpath="."/> 
  </xs:keyref> 
  <xs:keyref name="BLSYSLEVEL_Level4Code" refer="Level4Code"> 
   <xs:selector xpath="BuildingSystems/BlSysLevel/Level4Code"/> 
   <xs:field xpath="."/> 
  </xs:keyref> 
  <xs:key name="BLSYS_PrimaryKeys"> 
   <xs:selector xpath="Buildings/Building/BlSysl"/> 
   <xs:field xpath="BlSysLevelId"/> 
   <xs:field xpath="bl_id"/> 
  </xs:key> 
  <xs:keyref name="BLSYS_BlSysLevelId" refer="BLSYSLEVEL_BlSysLevelId"> 
   <xs:selector xpath="BuildingSystems/BlSysLevel/BlSysLevelId"/> 
   <xs:field xpath="."/> 
  </xs:keyref> 
  <xs:keyref name="BLSYS_bl_id" refer="BUILDING_bl_id"> 
   <xs:selector xpath="BuildingSystems/BlSysLevel/bl_id"/> 
   <xs:field xpath="."/> 
  </xs:keyref> 
  <xs:key name="BLSYSDOC_PrimaryKeys"> 
   <xs:selector xpath="BuildingSystems/BLSYSLEVEL/BLSYS/BLSYSDOC"/> 
   <xs:field xpath="BlSysDocId_BLSYS_BlSysId_BLSYSLEVEL_BlSysLevelId_FK_FK"/> 
   <xs:field xpath="BlSysDocId_BLSYS_BlSysId_AFM_bl_bl_id_FK_FK"/> 
   <xs:field xpath="BlSysDocId_DocumentType"/> 
  </xs:key> 
  <xs:keyref name="BLSYSDOC_BLSYS_ForeignKeys" refer="BLSYS_PrimaryKeys"> 
   <xs:selector xpath="BuildingSystems/BLSYSLEVEL/BLSYS/BLSYSDOC"/> 
   <xs:field xpath="BlSysDocId_BLSYS_BlSysId_BLSYSLEVEL_BlSysLevelId_FK_FK"/> 
   <xs:field xpath="BlSysDocId_BLSYS_BlSysId_AFM_bl_bl_id_FK_FK"/> 
  </xs:keyref> 
 </xs:element> 
 <xs:element name="UNIFORMAT"> 
  <xs:complexType> 
   <xs:sequence> 



 98

OMSIML Schema (cont.) 

    <xs:element ref="LEVEL1" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="LEVEL1"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Level1Code"/> 
    <xs:element name="Level1Name"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="60"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element ref="LEVEL2" minOccurs="0" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="LEVEL2"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Level2Code"/> 
    <xs:element name="Level2Name"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="60"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element ref="LEVEL3" minOccurs="0" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="LEVEL3"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Level3Code"/> 
    <xs:element name="Level3Name"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="60"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element ref="LEVEL4" minOccurs="0" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="LEVEL4"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Level4Code"/> 
    <xs:element name="Level4Name"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="60"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Buildings"> 
  <xs:complexType> 



 99

OMSIML Schema (cont.) 

   <xs:sequence> 
    <xs:element ref="Building" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Building"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="bl_id"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="10"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element name="name" minOccurs="0"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="25"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element ref="BlSys" minOccurs="0" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="EquipmentTypes"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="EqType" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="EqType"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="EqTypeId"/> 
    <xs:element name="Description"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="50"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="SystemEquipmentTypes"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="SysEqType" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="SysEqType"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="EqTypeId"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="5"/> 
       <xs:pattern value="[A-Z0-9]{1,5}"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 



 100

OMSIML Schema (cont.) 

    <xs:element name="Level4Code" type="Level4Type"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="BuildingSystems"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="BlSysLevel" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="BlSysLevel"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="BlSysLevelId"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="50"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element name="Level2Code" type="Level2Type"/> 
    <xs:element name="Level3Code" type="Level3Type" minOccurs="0"/> 
    <xs:element name="Level4Code" type="Level4Type" minOccurs="0"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="BlSys"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="BlSysLevelId"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="5"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element name="Description" minOccurs="0"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="50"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element ref="EqListing" minOccurs="0"/> 
    <xs:element ref="BlSysDoc" minOccurs="0" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="BlSysDoc"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="BlSysLevelId"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="50"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element name="bl_id"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="50"/> 
      </xs:restriction> 
     </xs:simpleType> 



 101

OMSIML Schema (cont.) 

    </xs:element> 
    <xs:element name="DocumentType"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="50"/> 
       <xs:enumeration value="Type1"/> 
       <xs:enumeration value="Type2"/> 
       <xs:enumeration value="Type3"/> 
       <xs:enumeration value="Type4"/> 
       <xs:enumeration value="Type5"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element name="DocumentName"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"> 
       <xs:maxLength value="50"/> 
      </xs:restriction> 
     </xs:simpleType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="PMLibrary"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="PMItem" maxOccurs="unbounded"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="Description" type="xs:string"/> 
       <xs:element name="Frequency" minOccurs="0"/> 
       <xs:element name="Units" type="xs:string" minOccurs="0"/> 
       <xs:element name="UnitsPerHour" type="xs:string" minOccurs="0"/> 
       <xs:element name="Skill" type="xs:string" minOccurs="0"/> 
       <xs:element name="Instructions" type="xs:string"/> 
       <xs:element name="TradeId" type="xs:string"/> 
       <xs:element name="TradeHours" type="xs:string"/> 
      </xs:sequence> 
      <xs:attribute name="PMId"/> 
     </xs:complexType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="EqListing"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element ref="EqItem" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="EqItem"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Description" type="xs:string"/> 
    <xs:element name="EqTypeId"> 
     <xs:simpleType> 
      <xs:restriction base="xs:string"/> 
     </xs:simpleType> 
    </xs:element> 
    <xs:element name="Level4Code" minOccurs="0"/> 
    <xs:element ref="PMReqs"/> 
   </xs:sequence> 
   <xs:attribute name="EqId" use="required"> 
    <xs:simpleType> 



 102

OMSIML Schema (cont.) 

     <xs:restriction base="xs:NMTOKEN"/> 
    </xs:simpleType> 
   </xs:attribute> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="PMReqs"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="PMId" maxOccurs="unbounded"/> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
 <xs:element name="Trades"> 
  <xs:complexType> 
   <xs:sequence> 
    <xs:element name="Trade" maxOccurs="unbounded"> 
     <xs:complexType> 
      <xs:sequence> 
       <xs:element name="TradeId" type="xs:string"/> 
       <xs:element name="Description" type="xs:string"/> 
      </xs:sequence> 
     </xs:complexType> 
    </xs:element> 
   </xs:sequence> 
  </xs:complexType> 
 </xs:element> 
</xs:schema> 

 

 



 103

APPENDIX C – SAMPLE OMSI DOCBOOK 

This appendix demonstrates the use of a DocBook to author and publish 

document-centric OMSI data such as a building system’s safety instructions.  The 

DocBook was authored using XMLSpy and published to PDF using DocBook Toolchain 

Manager. 



 

Sample DocBook XML for OMSI HVAC System Documentation (cont.) 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.3CR2//EN" 
"http://www.docbook.org/xml/4.3CR2/docbookx.dtd"> 
<book> 
 <bookinfo> 
  <title>OMSI Building System Documentation</title> 
  <subtitle>Sample Building System</subtitle> 
  <author> 
   <firstname>Scott</firstname> 
   <surname>Raymond</surname> 
   <email>spraymon@nps.navy.mil</email> 
  </author> 
  <editor> 
   <firstname>Lino</firstname> 
   <surname>Noble</surname> 
  </editor> 
  <publisher> 
   <publishername>LANTDIV</publishername> 
  </publisher> 
  <copyright> 
   <year>2004</year> 
  </copyright> 
  <abstract> 
   <formalpara> 
    <title></title> 
    <para>This is a sample DocBook that demonstrates its usefulness for 
authoring OMSI "documents".  A DocBook can be easily converted to HTML, RTF, PDF, or 
Word depending on the needs of the end-user.</para> 
   </formalpara> 
  </abstract> 
 </bookinfo> 
 <part> 
  <title>HVAC</title> 
  <chapter> 
   <title></title> 
   <sect1> 
    <title>Safety Instructions</title> 
    <para>When servicing electrical equipment, follow lockout/tagout procedures 
before performing any maintenance.  Be sure that the control circuitry has been 
completely disabled to prevent unexpected start up of the equipment.</para> 
    <para>Servicing the HVAC system involves dealing with components that 
operate on electrical power.   Components of the system may be idle and start without 
warning.    Before performing any maintenance or repairs on equipment, the warnings 
noted before the applicable procedure must be adhered to.   The electrical disconnect 
must be open, locked and tagged while working on the unit.</para> 
    <warning> 
     <title>Rotating Parts</title> 
     <para>Many components of the HVAC system have rotating parts, such as 
fans and compressors.   Components of the system may be idle and start without warning.  
In order to avoid physical injury, the electrical disconnect of equipment being worked 
on must be open, locked and tagged.</para> 
    </warning> 
    <warning> 
     <title>Fluid Under Pressure</title> 
     <para>While working on components with fluid that is under pressure, 
ensure that the unit being worked on has been isolated and relieved of all internal 
pressure.   Failure to do so may result in scalding in the case of steam and hot water, 
or other physical injuries.</para> 
    </warning> 
    <warning> 
     <title>Refrigerant</title> 
     <para>To prevent injury due to frostbite, avoid skin contact with 
refrigerant.</para> 
    </warning> 

 104



 105

Sample DocBook XML for OMSI HVAC System Documentation (cont.) 

    <para>In performing maintenance and repairs, follow the safety precautions 
outlined in this chapter and vendor data, for the respective system.   The operator 
should at all times be aware of the surroundings and exercise common sense and good 
judgment.</para> 
   </sect1> 
   <sect1> 
    <title>General Safety Precautions</title> 
    <itemizedlist> 
     <listitem> 
      <para>Some equipment may start automatically.   Follow established 
lockout/tagout procedures.</para> 
     </listitem> 
     <listitem> 
      <para>Exercise caution in opening steam lines.  Allow ample time for 
line heat-up.</para> 
     </listitem> 
     <listitem> 
      <para>Observe confined space procedures when entering designated 
areas.</para> 
     </listitem> 
     <listitem> 
      <para>When performing maintenance or repairs on electrical 
equipment, follow established lockout/tagout procedures.</para> 
     </listitem> 
     <listitem> 
      <para>When performing PM on fluid systems, isolate and safely 
relieve internal pressure.   Follow established lockout/tagout procedures.</para> 
     </listitem> 
     <listitem> 
      <para>Wear proper protective gear as applicable, such as:</para> 
      <itemizedlist> 
       <listitem> 
        <para>Eye protection or face shield</para> 
       </listitem> 
       <listitem> 
        <para>Hearing Protection</para> 
       </listitem> 
       <listitem> 
        <para>Chemical resistant apron and/or gloves</para> 
       </listitem> 
       <listitem> 
        <para>Electrician’s insulated gloves.</para> 
       </listitem> 
       <listitem> 
        <para>Protective footwear</para> 
       </listitem> 
       <listitem> 
        <para>Respirator</para> 
       </listitem> 
      </itemizedlist> 
     </listitem> 
    </itemizedlist> 
    <para>While servicing the HVAC system wear safety glasses or goggles.   
Failure to do so may cause physical injury.</para> 
    <para>In addition to these warnings, observe all other warnings noted 
within the vendor data.</para> 
   </sect1> 
  </chapter> 
  <chapter> 
   <title>System Start-up</title> 
   <sect1> 
    <title>TestSection1</title> 
    <para>This chapter details the startup procedures for various units of the 
HVAC system.</para> 
    <sect2 id="test2"> 



 106

Sample DocBook XML for OMSI HVAC System Documentation (cont.) 

     <title>AHU Startup for Cooling Season</title> 
     <procedure> 
      <step> 
       <para>Visually inspect unit for debris and blockage.</para> 
      </step> 
      <step> 
       <para>Check condensate drains for blockage and proper 
prime.</para> 
      </step> 
      <step> 
       <para>Ensure that the chiller has been started as per the 
chillier start up procedure in this section.</para> 
      </step> 
      <step> 
       <para>With the AHU and AHU local fans, disconnect switches in the 
“OFF” position, check that the AHU and AHU fan circuit breakers are closed.</para> 
      </step> 
      <step> 
       <para>Switch the AHU and AHU fans to the “ON” position at the 
disconnect switch.</para> 
      </step> 
      <step> 
       <para>Open the chilled water isolation valves.</para> 
      </step> 
      <step> 
       <para>Through the DDC ensure that the AHU is enabled.</para> 
      </step> 
      <step> 
       <para>Verify that the AHU fans are operating properly and the 
dampers are properly positioned.  Verify correct fan rotation.</para> 
      </step> 
      <step> 
       <para>Ensure that the respective exhaust fans for the AHU are 
operating.</para> 
      </step> 
      <step> 
       <para>Allow system to run for 30 minutes to reach steady 
state.</para> 
      </step> 
      <step> 
       <para>Check space temperature and verify that it is within + 2°F 
of the temperature set point.</para> 
      </step> 
      <step> 
       <para>Check drain for proper operation. Check for leaks and 
blockage.</para> 
      </step> 
     </procedure> 
    </sect2> 
    <sect2> 
     <title>Heating Hot Water Pump Startup for Heating Season</title> 
     <procedure> 
      <step> 
       <para>Verify that prestart checks have been performed on the HHW 
pumps.</para> 
      </step> 
      <step> 
       <para>Inspect pump seal for leakage.</para> 
      </step> 
      <step> 
       <para>Ensure that the suction and discharge valves are 
open.</para> 
      </step> 
      <step> 
       <para>Ensure that the HHW pump disconnect switch is in the closed 



 107

Sample DocBook XML for OMSI HVAC System Documentation (cont.) 

position.</para> 
      </step> 
      <step> 
       <para>Switch  H-O-A to “hand position.</para> 
      </step> 
      <step> 
       <para>Verify flow through the system.</para> 
      </step> 
      <step> 
       <para>Verify that there are no leaks around the pump seal.</para> 
      </step> 
      <step> 
       <para>Switch H-O-A to automatic.</para> 
      </step> 
     </procedure> 
    </sect2> 
   </sect1> 
  </chapter> 
 </part> 
</book> 

 
 



Sample OMSI HVAC System DocBook Published as a PDF 

 

 108



 109

Sample OMSI HVAC System DocBook Published as a PDF 



 110

Sample OMSI HVAC System DocBook Published as a PDF 



APPENDIX D – XSLT AND XQUERY TRANSFORMATIONS 
LISTING 

This appendix lists the XSLT and XQuery Transformations used throughout the 

development of this thesis. 

XSLT to Transform PMLibrary.xml to ArchibusML.xml (cont.) 

<?xml version="1.0"?> 
<xsl:stylesheet exclude-result-prefixes="xsl" version="1.0" 
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 <xsl:template match="/"> 
  <ARA> 
   <xsl:element name="Table"> 
    <xsl:attribute name="Name">pmp</xsl:attribute> 
    <Header> 
     <Parameters AllowUpdates="0" AllowSQLStatements="1" Sort="pmp.pmp_id" 
AllowInsertions="1"/> 
     <Fields pmp_id="PM Procedure" description="PM Procedure Description" 
pmp_type="Procedure Type" tr_id="Primary Trade" skill_id="Skill Required" units="Std. 
Units (sq. ft., etc.)" units_hour="Std. Units per Hour"/> 
     <SQLExecute/> 
    </Header> 
    <Data> 
     <xsl:for-each select="PMLibrary/PMItem"> 
      <pmp> 
       <xsl:attribute name="pmp_id"><xsl:value-of select="@PMID"/></xsl:attribute> 
       <xsl:attribute name="description"><xsl:value-of 
select="Description"/></xsl:attribute> 
       <xsl:attribute name="pmp_type"><xsl:text>EQ</xsl:text></xsl:attribute> 
       <xsl:attribute name="tr_id"><xsl:value-of select="TradeID"/></xsl:attribute> 
       <xsl:attribute name="skill_id"><xsl:value-of select="Skill"/></xsl:attribute> 
       <xsl:attribute name="units"><xsl:value-of select="Units"/></xsl:attribute> 
       <xsl:attribute name="units_hour"><xsl:value-of 
select="UnitsPerHour"/></xsl:attribute> 
      </pmp> 
     </xsl:for-each> 
    </Data> 
   </xsl:element> 
   <xsl:element name="Table"> 
    <xsl:attribute name="Name">pmps</xsl:attribute> 
    <Header> 
     <Parameters AllowUpdates="1" AllowSQLStatements="1" Restriction="" 
Sort="pmps.pmp_id, pmps.pmps_id" AllowInsertions="1"/> 
     <Fields instructions="Instructions" pmps_id="PM Step Code" pmp_id="PM Procedure 
Code"/> 
     <SQLExecute/> 
    </Header> 
    <Data> 
     <xsl:for-each select="PMLibrary/PMItem"> 
      <pmps> 
       <xsl:attribute name="pmp_id"><xsl:value-of select="@PMID"/></xsl:attribute> 
       <xsl:attribute name="pmps_id"><xsl:text>1</xsl:text></xsl:attribute> 
       <xsl:attribute name="instructions"><xsl:value-of 
select="Instructions"/></xsl:attribute> 
      </pmps> 
     </xsl:for-each> 
    </Data> 
   </xsl:element> 
   <xsl:element name="Table"> 
    <xsl:attribute name="Name">pmpstr</xsl:attribute> 
    <Header> 

 111



 112

XSLT to Transform PMLibrary.xml to ArchibusML.xml (cont.) 

     <Parameters AllowUpdates="1" AllowSQLStatements="1" Restriction="" 
Sort="pmpstr.pmp_id, pmpstr.pmps_id, pmpstr.tr_id" AllowInsertions="1"/> 
     <Fields tr_id="Trade Code" pmps_id="PM Step Code" hours_req="Hours Required" 
pmp_id="PM Procedure Code"/> 
     <SQLExecute/> 
    </Header> 
    <Data> 
     <xsl:for-each select="PMLibrary/PMItem"> 
      <pmpstr> 
       <xsl:attribute name="pmp_id"><xsl:value-of select="@PMID"/></xsl:attribute> 
       <xsl:attribute name="pmps_id"><xsl:text>1</xsl:text></xsl:attribute> 
       <xsl:attribute name="hours_req"><xsl:value-of 
select="TradeHours"/></xsl:attribute> 
       <xsl:attribute name="tr_id"><xsl:value-of select="TradeID"/></xsl:attribute> 
      </pmpstr> 
     </xsl:for-each> 
    </Data> 
   </xsl:element> 
  </ARA> 
 </xsl:template> 
</xsl:stylesheet> 

 

 



 113

 

XQuery to Transform OMSIML into an Intermediate Markup Language for the DBPS 

<DBPS> 
 { 
 for $Trade in /OMSI/Trades/Trade 
 return 
 <Trade TradeID="{$Trade/TradeID/text()}"> 
  { 
  for $Bl in /OMSI/Buildings/Building 
  return 
  <Building BlID="{$Bl/bl_id/text()}"> 
   { 
   for $BlSys in $Bl/BlSys 
   return 
   <BuildingSystem BlSysLevelID="{$BlSys/BlSysLevelID/text()}"> 
    {  
    for $EqItem in $BlSys/EqListing/EqItem, $PMItem in /OMSI/PMLibrary/PMItem 
    where ($EqItem/PMReqs/PMID = $PMItem/@PMID) and ($PMItem/TradeID = $Trade/TradeID) 
    return 
    <EqItem EqID="{$EqItem/@EqID}"> 
     <PMID> 
        
     </PMID> 
     <Frequency> 
      {$PMItem/Frequency/text()} 
     </Frequency> 
     <Hours> 
      {$PMItem/TradeHours/text()} 
     </Hours> 
    </EqItem> 
    } 
   </BuildingSystem> 
   } 
  </Building> 
  } 
 </Trade> 
 } 
</DBPS> 

 

 



 114

 

XSLT to Transform OMSIML into an Intermediate Markup Language for the DBPS 

<?xml version="1.0" ?> 
<xsl:stylesheet exclude-result-prefixes="xsl" version="1.0" 
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 <xsl:template match="/"> 
  <DBPS xsi:noNamespaceSchemaLocation="file://k:\NPS\Thesis\OMSI\DBPS\DBPS.xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 
   <xsl:for-each select="OMSI/Trades/Trade"> 
    <xsl:variable name="TradeID" select="TradeID"/> 
    <Trade> 
     <xsl:attribute name="TradeID"> 
      <xsl:value-of select="TradeID"/> 
     </xsl:attribute> 
     <xsl:for-each select="../../Buildings/Building"> 
      <Building> 
       <xsl:attribute name="BlID"> 
        <xsl:value-of select="bl_id"/> 
       </xsl:attribute> 
       <xsl:for-each select="BlSys"> 
        <BuildingSystem> 
         <xsl:attribute name="BlSysLevelID"> 
          <xsl:value-of select="BlSysLevelID"/> 
         </xsl:attribute> 
         <xsl:for-each select="EqListing/EqItem/PMReqs/PMID"> 
          <xsl:variable name="PMID" select="."/> 
          <xsl:if test="/OMSI/PMLibrary/PMItem[@PMID=$PMID]/TradeID = $TradeID"> 
           <EqItem> 
            <xsl:attribute name="EqID"> 
             <xsl:value-of select="../../@EqID"/> 
            </xsl:attribute> 
            <PMID> 
             <xsl:value-of select="."/> 
            </PMID> 
            <Frequency> 
             <xsl:value-of 
select="/OMSI/PMLibrary/PMItem[@PMID=$PMID]/Frequency"/> 
            </Frequency> 
            <Hours> 
             <xsl:value-of 
select="/OMSI/PMLibrary/PMItem[@PMID=$PMID]/TradeHours"/> 
            </Hours> 
           </EqItem> 
          </xsl:if> 
         </xsl:for-each> 
        </BuildingSystem> 
       </xsl:for-each> 
      </Building> 
     </xsl:for-each> 
    </Trade> 
   </xsl:for-each> 
  </DBPS> 
 </xsl:template> 
</xsl:stylesheet> 

 

 



 

XSLT to Render the DBPS Intermediate XML to HTML (cont.) 

<?xml version="1.0" encoding="UTF-8"?> 
 
<!-- Filename:  DBSPRecursion.xsl --> 
<!-- Render DBPS Intermediate XML to HTML --> 
<!-- This uses recursion to calculate the total hours --> 
 
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> 
 <xsl:output method="html"/> 
 <xsl:template match="/"> 
  <html> 
   <head/> 
   <body> 
    <p align="center"> 
     <font face="Arial Black" size="4">Naval Air Station Sigonella</font> 
    </p> 
    <p align="center"> 
     <font face="Arial Black" size="4">Operations, Maintenance, and  
Support Information</font> 
    </p> 
    <table border="0" cellpadding="0" cellspacing="0" style="border-collapse: collapse" 
width="100%" id="AutoNumber1"> 
     <tr> 
      <td width="101"> 
       <p align="center"> 
        <img border="0" src="graphics/NASSIGLogo.jpg" width="93" height="93"/> 
       </p> 
      </td> 
      <td> 
       <p align="center"> 
        <font face="Arial Black" size="6">Design-Based Planning  
        Submittal</font> 
       </p> 
      </td> 
      <td> 
       <p align="center"> 
        <img border="0" width="93" height="93" src="graphics/LANTDIVLogo.jpg"/> 
       </p> 
      </td> 
     </tr> 
    </table> 
    <p align="center"> 
     <font face="Arial" size="4">Construction Project:&#160; P-620</font> 
    </p> 
    <p align="center"> 
     <font face="Arial" size="4">Submittal Delivery Date:&#160; 1  
June 2003</font> 
    </p> 
    <p align="center"> 
     <font face="Arial" size="4">Prepared by:&#160; Syska</font> 
    </p> 
    <p>&#160;</p> 
 
    <xsl:for-each select="DBPS"> 
     <table width="100%" border="1" cellpadding="0" cellspacing="0"> 
      <thead> 
       <tr bgcolor="#800000"> 
        <td width="15%" rowspan="2"> 
         <div align="center"> 
          <font face="Arial" size="3" color="#FFFFFF">Trade</font> 
         </div> 
        </td> 

 115



 116

XSLT to Render the DBPS Intermediate XML to HTML (cont.) 

        <td width="70%"> 
         <div align="center"> 
          <font face="Arial" size="3" color="#FFFFFF">Buildings Systems by 
Building</font> 
         </div> 
        </td> 
        <td width="15%" rowspan="2"> 
         <div align="center"> 
          <font face="Arial" size="3" color="#FFFFFF">Total Trade Hours</font> 
         </div> 
        </td> 
       </tr> 
       <tr bgcolor="#800000"> 
        <td> 
         <table width="100%" border="1" cellpadding="0" cellspacing="0"> 
          <thead> 
           <tr> 
            <td width="25%"> 
             <div align="center"> 
              <font face="Arial" size="3" color="#FFFFFF">Building</font> 
             </div> 
            </td> 
            <td> 
             <table width="100%" border="1" cellpadding="0" cellspacing="0"> 
              <thead> 
               <tr> 
                <td width="50%"> 
                 <div align="center"> 
                  <font face="Arial" size="3" color="#FFFFFF">Building 
System</font> 
                 </div> 
                </td> 
                <td width="50%"> 
                 <div align="center"> 
                  <font face="Arial" size="3" color="#FFFFFF">Total BlSys 
Hours</font> 
                 </div> 
                </td> 
               </tr> 
              </thead> 
              <tbody/> 
             </table> 
            </td> 
            <td width="25%"> 
             <div align="center"> 
              <font face="Arial" size="3" color="#FFFFFF">Total Building 
Hours</font> 
             </div> 
            </td> 
           </tr> 
          </thead> 
          <tbody/> 
         </table> 
        </td> 
       </tr> 
      </thead> 
 
      <tbody> 
       <xsl:for-each select="Trade"> 
        <xsl:if test="count(descendant::EqItem) &gt; 0"> 
         <xsl:variable name="trhours"> 
          <xsl:call-template name="sumhours"> 
           <xsl:with-param name="list" select="Building/BuildingSystem/EqItem"/> 
          </xsl:call-template> 
         </xsl:variable> 



 117

XSLT to Render the DBPS Intermediate XML to HTML (cont.) 

         <tr> 
          <td width="16% "> 
           <div align="center"> 
            <xsl:for-each select="@TradeId"> 
             <xsl:value-of select="."/> 
            </xsl:for-each> 
           </div> 
          </td> 
          <td> 
           <xsl:for-each select="Building"> 
            <xsl:if test="count(descendant::EqItem) &gt; 0"> 
             <xsl:variable name="blhours"> 
              <xsl:call-template name="sumhours"> 
               <xsl:with-param name="list" select="BuildingSystem/EqItem"/> 
              </xsl:call-template> 
             </xsl:variable> 
             <table width="100%" border="1" cellpadding="0" cellspacing="0"> 
              <thead/> 
              <tbody> 
               <tr> 
                <td width="25%"> 
                 <div align="center"> 
                  <xsl:value-of select="@BlId"/> 
                 </div> 
                </td> 
                <td width="50%"> 
                 <xsl:for-each select="BuildingSystem"> 
                  <xsl:if test="count(descendant::EqItem) &gt; 0"> 
                   <xsl:variable name="blsyshours"> 
                    <xsl:call-template name="sumhours"> 
                     <xsl:with-param name="list" select="EqItem"/> 
                    </xsl:call-template> 
                   </xsl:variable> 
                   <table width="100%" border="1" cellpadding="0" 
cellspacing="0"> 
                    <thead/> 
                    <tbody> 
                     <tr> 
                      <td width="50%"> 
                       <div align="center"> 
                        <xsl:value-of select="@BlSysLevelId"/> 
                       </div> 
                      </td> 
                      <td width="50%"> 
                       <div align="center"> 
                        <xsl:value-of select="format-number($blsyshours, 
'#')"/> 
                       </div> 
                      </td> 
                     </tr> 
                    </tbody> 
                   </table> 
                  </xsl:if> 
                 </xsl:for-each> 
                </td> 
                <td width="25%"> 
                 <div align="center"> 
                  <xsl:value-of select="format-number($blhours, '#')"/> 
                 </div> 
                </td> 
               </tr> 
              </tbody> 
             </table> 
            </xsl:if> 
           </xsl:for-each> 



 118

XSLT to Render the DBPS Intermediate XML to HTML (cont.) 

          </td> 
          <td> 
           <div align="center"> 
            <xsl:value-of select="format-number($trhours, '#')"/> 
           </div> 
          </td> 
         </tr> 
        </xsl:if> 
       </xsl:for-each> 
      </tbody> 
     </table> 
    </xsl:for-each> 
   </body> 
  </html> 
 </xsl:template> 
 
 <xsl:template name="sumhours"> 
  <xsl:param name="list"/> 
  <xsl:choose> 
   <xsl:when test="$list"> 
    <xsl:variable name="first" select="$list[1]"/> 
    <xsl:variable name="totalrest"> 
     <xsl:call-template name="sumhours"> 
      <xsl:with-param name="list" select="$list[position()!=1]"/> 
     </xsl:call-template> 
    </xsl:variable> 
    <xsl:value-of select="$first/Frequency * $first/Hours + $totalrest"/> 
   </xsl:when> 
   <xsl:otherwise>0</xsl:otherwise> 
  </xsl:choose> 
 </xsl:template> 
</xsl:stylesheet> 



 119

LIST OF REFERENCES 

Ackoff, R. L. (1989). "From Data to Wisdom." Journal of Applied Systems Analysis 16: 
3-9.  

Bourret, R. Mapping DTDs to Databases. 2002. 
http://www.rpbourret.com/xml/DTDToDatabase.htm. Accessed 01 August 2004. 

Bourret, R. XML and Databases. November 2003. 
http://www.rpbourret.com/xml/XMLAndDatabases.htm. Accessed 01 April 2004. 

Bourret, R. XML Database Products. 26 March 2004. 
http://www.rpbourret.com/xml/XMLDatabaseProds.htm. Accessed 01 April 2004. 

Brandin, C. (2003). Information Modeling with XML. XML Data Management. A. 
Chaudhri, A. Rashid and R. Zicari., Addison Wesley Professional. 

Chamberlin, D., D. Draper, et al. (2003). XQuery from the Experts : A Guide to the W3C 
XML Query Language. Boston, Addison-Wesley. 

Dayen, I. Storing XML in Relational Databases. 
http://www.xml.com/lpt/a/2001/06/20/databases.html. Accessed 1 April 2004. 

Holman, G. K. (2003). Definitive XSL-FO. Prentice-Hall. 

Kay, M. (2003). XSLT Programmer's Reference, 2nd. Indianapolis, IN, Wrox. 

Kay, M. (2004a). Xquery for 'hard data probs' was RE: [xsl] XSLT vs Perl. XSL-List, 
Mullberry Technologies, Inc. 

Kay, M. (2004b). A Conversation with Michael Kay on XML Technologies. I. Pedruzzi, 
The Stylus Scoop. 

Kurt, K. (2004). Xquery for 'hard data probs' was RE: [xsl] XSLT vs Perl. XSL-List, 
Mullberry Technologies, Inc. 

LANTDIV. LANTDIV Homepage. http://www.lantdiv.navfac.navy.mil. Accessed 01 
August 2003. 

Lantz, K. E. (1985). The Prototyping Methodology. Englewood Cliffs, N.J., Prentice-
Hall. 

Lee, D., M. Mani, et al. (2002). Schema Conversion Methods Between XML and 
Relational Models. European Conference on Artificial Intelligence (ECAI), 
Knowledge Transformation Workshop (ECAI-OT), Lyon, France, The NIKE 
(Nittany Information, Knowledge and wEb) Research Group. 

MetaMatrix. Model-Driven Information Integration. 
http://www.metamatrix.com/whitepapers/Model-DrivenIntegration.pdf. Accessed 
01 April 2004. 

OASIS. Technology Reports:  RELAX NG. 15 December 2003. 
http://xml.coverpages.org/relax-ng.html. Accessed 01 August 2004. 

http://www.rpbourret.com/xml/DTDToDatabase.htm
http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://www.rpbourret.com/xml/XMLDatabaseProds.htm
http://www.xml.com/lpt/a/2001/06/20/databases.html
http://www.lantdiv.navfac.navy.mil/
http://www.metamatrix.com/whitepapers/Model-DrivenIntegration.pdf
http://xml.coverpages.org/relax-ng.html


 120

Provost, W. Normalizing XML. 13 November 2002. 
http://www.xml.com/pub/a/2002/11/13/normalizing.html. Accessed 13 June 2004. 

Ruyak, B., L. Mathwani, et al. Optimizing XML Processing for Performance. 
http://servlet.java.sun.com/javaone/resources/content/sf2003/conf/sessions/pdfs/3
420.pdf. Accessed 1 August 2004. 

Ryan, J. Modeling One-to-Many Relationships with XML. 28 January 2003. 
http://www.developer.com/xml/article.php/1575731. Accessed 01 April 2004. 

Shiell, A., J. James, et al. (2002). Practical XML for the Web. glasshaus. 

Staken, K. (2001). "Introduction to Native XML Databases." O'Reilly xml.com. 
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

Strayton, B. (2003). DocBook XSL:  The Complete Guide. Sagehill Enterprises. 

U.S. Federal CIO Council (2002). Draft Federal XML Developer's Guide. 

Walsh, N. and L. Muellner. DocBook:  The Definitive Guide. 31 December 2003. 
http://www.docbook.org/tdg/en/html/docbook.html. Accessed 24 May 2004. 

Williams, K., M. Brundage, et al. (2000). Professional XML Databases. Birmingham, 
UK; Chicago, Wrox Press. 

Xpriori. Xpriori Homepages. http://www.xpriori.com. Accessed 01 April 2004. 

ZapThink. Key XML Specifications and Standards. May 2002. 
http://www.zapthink.com/report.html?id=ZTS-GI101. Accessed 01 June 2003. 

 

 

http://www.xml.com/pub/a/2002/11/13/normalizing.html
http://servlet.java.sun.com/javaone/resources/content/sf2003/conf/sessions/pdfs/3420.pdf
http://servlet.java.sun.com/javaone/resources/content/sf2003/conf/sessions/pdfs/3420.pdf
http://www.developer.com/xml/article.php/1575731
http://www.xml.com/pub/a/2001/10/31/nativexmldb.html
http://www.docbook.org/tdg/en/html/docbook.html
http://www.xpriori.com/
http://www.zapthink.com/report.html?id=ZTS-GI101


 121

LIST OF SOFTWARE APPLICATIONS AND STANDARDS 

[ARCHIBUS]. ARCHIBUS Inc., ARCHIBUS/FM v14, http://www.archibus.com/  

[AUTHENTIC]. Altova, authentic v2004, http://www.altova.com/products_doc.html  

[DOCMAN]. Trieloff, L., DocBook Toolchain Manager, 
http://trieloff.net/docbook/archive/cat_docman2.html  

[DOM1.0]. W3C Recommendation, Document Object Model (DOM) Level 3 Core v1.0, 
07 April 2004, http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/  

[FOP]. Apache's XML Project, FOP (Formatting Ojects Processor), 
http://xml.apache.org/fop/  

[IDEF1X]. Federal Information Processing Standards Publication, Integration Definition 
or Information Modeling (IDEF1X), 21 December 1993, 
http://www.itl.nist.gov/fipspubs/idef1x.doc  

[MAXIMO]. MRO Software, MAXIMO® v5, 
http://www.mro.com/corporate/assetmanagement/maximo-5/index.php  

[NEOCORE XMS]. Xpriori, Neocore XML Information Management System, 2004, 
http://www.xpriori.com/html/products.html  

[RELAXNG]. OASIS Committee Specification, RELAX NG, 03 December 2001, 
http://www.relaxng.org/  

[SAXON]. Kay, M., Saxon v8.0, http://saxon.sourceforge.net/  

[STYLUSSTUDIO]. Sonic, Stylus Studio v5, http://www.stylusstudio.com/  

[SYNTONIX]. DMSi, SyntoniX, http://www.dmsi-world.com/syntonix.htm  

[UNIFORMATII]. ASTM, E1557-97 "Standard Classification of Building Elements and 
Related Sitework - UNIFORMAT II", http://www.uniformat.org/  

[XEP]. xAttic, XEP XSL Rendering Engine, http://xep.xattic.com/xep/  

[XML1.0]. W3C Recommendation, Extensible Markup Language (XML) 1.0 (Third 
Edition), 04 February 2004, http://www.w3.org/TR/REC-xml/  

[XMLDATAMODEL]. W3C Essay, The XML Data Model, 1997, 
http://www.w3.org/XML/Datamodel.html  

[XMLGUIDE]. U.S. Federal CIO Council, Draft Federal XML Developer's Guide, 
http://xml.gov/documents/in_progress/developersguide.pdf  

[XMLSCHEMA]. W3C Recommendation, XML Schema Part 0:  Primer, Part 1:  
Structures, and Part 2:  Datatypes, 2001, http://www.w3.org/TR/xmlschema-0/  

[XMLSPY]. Altova, xmlspy v2004, http://www.altova.com/products_ide.html  

[XPATH1.0]. W3C Recommendation, XML Path Language (XPath) Version 1.0, 16 
November 1999, http://www.w3.org/TR/xpath/  

http://www.archibus.com/
http://www.altova.com/products_doc.html
http://trieloff.net/docbook/archive/cat_docman2.html
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://xml.apache.org/fop/
http://www.itl.nist.gov/fipspubs/idef1x.doc
http://www.mro.com/corporate/assetmanagement/maximo-5/index.php
http://www.xpriori.com/html/products.html
http://www.relaxng.org/
http://saxon.sourceforge.net/
http://www.stylusstudio.com/
http://www.dmsi-world.com/syntonix.htm
http://www.uniformat.org/
http://xep.xattic.com/xep/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/XML/Datamodel.html
http://xml.gov/documents/in_progress/developersguide.pdf
http://www.w3.org/TR/xmlschema-0/
http://www.altova.com/products_ide.html
http://www.w3.org/TR/xpath/


 122

[XPATH2.0]. W3C Working Draft, XML Path Language (XPath) Version 2.0, 23 July 
2004, http://www.w3.org/TR/xpath20/  

[XQUERY]. W3C Working Draft, XQuery 1.0:  An XML Query Languague, 23 July 
2004, http://www.w3.org/TR/xpath20/  

[XSLT1.0]. W3C Recommendation, XSL Transformations Version 1.0, 16 November 
1999, http://www.w3.org/TR/xslt/  

[XSLT2.0]. W3C Working Draft, XSL Transformations Version 2.0, 12 November 2003, 
http://www.w3.org/TR/xslt20/  

[XXE]. Pixware, XMLmind XML Editor v2.6, http://www.xmlmind.com/xmleditor/  

 

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xslt/
http://www.w3.org/TR/xslt20/
http://www.xmlmind.com/xmleditor/


 123

INITIAL DISTRIBUTION LIST 

1. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  

 
2. Mr. Roy Morris 

Facilities Management and Engineering Branch 
Atlantic Division, Naval Engineering Facilities Command 
Norfolk, Virginia 

 
3. Mr. Lino Noble 

OMSI Team 
Atlantic Division, Naval Engineering Facilities Command 
Norfolk, Virginia 

 
4. LT Charles Kubic 

Public Works Operations Officer 
NAS Sigonella 
Sicily, Italy 

 
5. Professor D. C. Boger  

Naval Postgraduate School 
Monterey, California 

 
 
 
 


	PROBLEM CHARACTERIZATION
	PROBLEM DESCRIPTION
	METHODOLOGY
	SCOPE OF THESIS
	SUMMARY OF THESIS

	BACKGROUND OF PROBLEM
	ORGANIZATIONAL OVERVIEW
	Atlantic Division, Naval Engineering Facilities Command (LAN
	Naval Air Station Sigonella (NASSIG)
	Support Contractors

	SUMMARY OF PROBLEM
	Current OMSI Delivery Process
	The Future of OMSI


	REVIEW OF TECHNOLOGIES
	BACKGROUND CONCEPTS
	DATA, MODELS, AND METAMODELS
	The Relational Data Model
	Characteristics of the Relational Data Model
	Benefits of the Relational Data Model

	The XML Data Model
	Comparison Between the Relational and XML Data Models

	DATA STORAGE SYSTEMS
	XML AS A DATA STORAGE SYSTEM
	Separating Data from Presentation
	Platform Independent Transportation of Data

	MIDDLEWARE

	Archibus Schema for Representing OMSI Data
	Development History
	Building Systems
	Document Management

	OMSI Entity Relationship Diagram
	Database Relationships Diagram
	DOCUMENT-CENTRIC INFORMATION

	XML SCHEMA FOR REPRESENTING OMSI DATA
	BACKGROUND
	SCHEMA TECHNOLOGIES
	DTDs
	XML Schema
	RELAX NG

	SCHEMA STRUCTURE CONSIDERATIONS
	Elements vs. Attributes
	Hierarchical Composition
	Normalization

	MODELING RULES
	Modeling Recipes
	Representing Relationships in XML

	OMSI XML SCHEMA

	STORAGE OF XML-BASED OMSI INFORMATION
	STORAGE METHODS
	File Systems
	Relational Databases
	Native XML Databases

	XML DATABASE PRODUCTS
	DATA-CENTRIC  STORAGE
	DOCUMENT-CENTRIC STORAGE
	DocBook Background
	Creating DocBooks
	Rendering DocBooks with Styling
	Sample OMSI DocBook


	XML-BASED OMSI INFORMATION TRANSFORMATIONS
	TRANSFORMATION TECHNOLOGIES
	XSL Transformations (XSLT)
	XQuery
	Comparison of XSLT and XQuery

	INTEGRATED WEB BROWSER SUPPORT

	DEVELOPMENT AND IMPLEMENTATION
	ARCHIBUS TO OMSIML TRANSFORMATION
	THE DESIGN-BASED PLANNING SUBMITTAL
	THE PM LIBRARY

	CONCLUSIONS AND IMPLICATIONS
	CONCLUSIONS
	AREAS FOR FURTHER RESEARCH AND DEVELOPMENT
	IMPLICATIONS
	– ARCHIBUS DATA TRANSFER FUNCTIONALITY
	– OMSI XML SCHEMA
	– SAMPLE OMSI DOCBOOK
	– XSLT AND XQUERY TRANSFORMATIONS LISTING






